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ABSTRACT 

In this research work, we address the problem of melody detection in polyphonic audio. 
Our system comprises three main modules, where a number of rule-based procedures are 
proposed to attain the specific goals of each unit: i) pitch detection; ii) determination of mu-
sical notes (with precise temporal boundaries and pitches); and iii) identification of melodic 
notes. We follow a multi-stage approach, inspired on principles from perceptual theory 
and musical practice. Physiological models and perceptual cues of sound organization are 
incorporated into our method, mimicking the behavior of the human auditory system to 
some extent. Moreover, musicological principles are applied, in order to support the 
identification of the musical notes that convey the main melodic line.  

Our algorithm starts with an auditory-model-based pitch detector, where multiple pitches 
are extracted in each analysis frame. These correspond to a few of the most intense fun-
damental frequencies, since one of our basis assumptions is that the main melody is usu-
ally salient in musical ensembles.  

Unlike most other melody extraction approaches, we aim to explicitly distinguish 
individual musical notes, characterized by specific temporal boundaries and MIDI note 
numbers. In addition, we store their exact frequency sequences and intensity-related val-
ues, which might be necessary for the study of performance dynamics, timbre, etc. We 
start this task with the construction of pitch trajectories that are formed by connecting pitch 
candidates with similar frequency values in consecutive frames. The objective is to find 
regions of stable pitches, which indicate the presence of musical notes.  

Since the created tracks may contain more than one note, temporal segmentation 
must be carried out. This is accomplished in two steps, making use of the pitch and in-
tensity contours of each track, i.e., frequency and salience-based segmentation. In fre-
quency-based track segmentation, the goal is to separate all notes of different pitches that 
are included in the same trajectory, coping with glissando, legato and vibrato and other 
sorts of frequency modulation. As for salience-based segmentation, the objective is to 
separate consecutive notes at the same pitch, which may have been incorrectly inter-
preted as forming one single note.  

Regarding the identification of the notes bearing the melody, we found our strategy 
on two core assumptions that we designate as the salience principle and the melodic smooth-
ness principle. By the salience principle, we assume that the melodic notes have, in gen-
eral, a higher intensity in the mixture (although this is not always the case). As for the 
melodic smoothness principle, we exploit the fact that melodic intervals tend normally to 
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be small. Finally, we aim to eliminate false positives, i.e., erroneous notes present in the 
obtained melody. This is carried out by removing the notes that correspond to abrupt 
salience or duration reductions and by implementing note clustering to further discrimi-
nate the melody from the accompaniment. 

Experimental results were conducted, showing that our method performs satisfacto-
rily under the specified assumptions. However, additional difficulties are encountered in 
song excerpts where the intensity of the melody in comparison to the surrounding ac-
companiment is not so favorable.  

To conclude, despite its broad range of applicability, most of the research problems 
involved in melody detection are complex and still open. Most likely, sufficiently robust, 
general, accurate and efficient algorithms will only become available after several years of 
intensive research. 

 

 

Keywords: melody detection in polyphonic audio, music information retrieval, melody 
perception, musicology, pitch detection, conversion of pitch sequences into musical 
notes, pitch tracking and temporal segmentation, onset detection, identification of me-
lodic notes, melody smoothing, note clustering.  
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Chapter 1  
 
INTRODUCTION 

 “There is sweet music here that softer falls 

Than petals from blown roses on the grass, 

Or night-dews on still waters between walls 

Of shadowy granite, in a gleaming pass; 

Music that gentlier on the spirit lies, 

Than tired eyelids upon tired eyes; 

Music that brings sweet sleep down from the blissful skies.” 

Alfred Lord Tennyson, “The Song of the Lotos-Eaters”, 1832 

Wherever man is, there is music. Music was, is and will always be present in the 
lives of people, both individually and socially, through the cultural, leisure, 
religious or professional dimensions of existence. As a means of celebration, 

music has always accompanied man’s festive moments. In the expression of human re-
ligiosity, music is synonymous of prayer and draws man closer to the transcendent and to 
the infinite. In sport activities, music can be used to keep an athlete motivated, relax him 
or help him to focus. Music can be approached as an aid in the therapy of nervous dis-
turbances or even in the improvement of student performances. 

Music is a most eloquent form of communication, expressing “that which cannot be 
put into words and that which cannot remain silent” (Victor Hugo). Composers are the 
masters of such powerful language, acting as our interlocutors and using it to portray 
what we and them feel incapable of communicating solely by words: love, passion, ten-
derness, anguish and serenity, joy and sorrow; in one word, the four seasons of the soul. 
Their language then becomes our language: by listening to music, emotions and memo-
ries, laughter and tears, thoughts and reactions, are awakened. We associate music with 
the most unique moments of our lives and music is part of our individual and social 
imaginary. Yes, “life has a soundtrack” [Gomes, 2005]… And, for that matter, mankind 
also has, as “the history of a people is found in its songs” (George Jellinek). 

1 



2 Chapter 1.   Introduction  

Music is all around us. It is in the street and in the bus, in the elevator, in the gym, 
on radio and TV, in church, in supermarkets, in pubs and, strikingly, on the Internet.  

Given its major importance in all human societies throughout history and particu-
larly nowadays, music plays a role in the world economy. In fact, the music industry 
runs, only in the USA, an amount of money in the order of several billion US dollars 
per year. For illustration, it is estimated that Apple iTunes1 sells approximately 1.25 mil-
lion songs everyday. Since the service was launched (April 2003), until the beginning of 
2005, around 250 million songs had been sold in total [TechWhack, 2005]. At 99 USD 
cents per song, this figure amounts to $1,237,500 per day and $451,687,500 per year. 

These days, digital music is available in many and different forms, places and con-
texts. Indeed, as a consequence of recent technological innovations, there has been a 
tremendous growth in the Electronic Music Distribution (EMD) industry. Factors like 
the widespread access to the Internet, bandwidth increasing in domestic and mobile ac-
cesses, the development of compact audio formats with CD or near CD quality (e.g., 
mp3, wma), portable music devices, peer-to-peer networks (e.g., Napster2, Kazaa3), online 
music stores (e.g., iTunes, OD24) or music identification platforms (e.g., Shazam5, 411-
Song6) have given a great contribution to that boom. Presently, it is expected that the 
number of digital music archives, as well as their dimension, grow significantly in the 
near future, both in terms of music database size and in number of genres covered. This 
situation poses new perspectives and challenges to music librarians and service providers. 

In this introductory chapter, we present the main motivations, objectives and con-
tributions of this research work, and the overall organization of the dissertation. The 
chapter is structured as described in the following paragraphs. 

Section 1.1. Motivation and Scope 

First of all, we introduce the main motivations and scope of this project. The prob-
lem of music retrieval is presented and some of its modalities are described, namely 
query-by-example and query-by-melody. The relevance of melody detection in polyphonic 
audio to several application domains is then discussed. 

                                                        
1  http://www.apple.com/itunes/ 
2  http://www.napster.com/ 
3  http://www.kazaa.com/ 
4  Acronym for On Demand Distribution: http://www.od2.com/ 
5  http://www.shazam.com/ 
6  http://www.411song.com/ 

 



Chapter 1.   Introduction 3 

Section 1.2. Objectives and Approaches 

In the second section, we describe our main objectives and briefly sketch the overall 
methodology. 

Section 1.3. Main Contributions 

The main contributions of this work are then summarized in connection with the 
three main modules of our system: pitch detection, conversion of pitch sequences into 
musical notes and identification of melodic notes. The publications that resulted from 
this project are listed and briefly described. 

Section 1.4. Outline of the Dissertation 

We end this chapter with the roadmap of the dissertation. The structure of the 
document is presented and the content of each chapter is outlined. 

1.1. Motivation and Scope 

Peter went to a bookstore. His girlfriend’s birthday is approaching and a few days ago she said 
something about historical romances. He goes to the corresponding section of the shop and picks a 
few books that seem interesting. Ambient music sounds softly and, while reading the synopses, he 
unconsciously starts to hum the listened melodies. At some point, an unknown song catches his 
attention. “Nice sound”, he thinks. After a few repetitions of the chorus, he has more or less memo-
rized it and starts to accompany it quietly. He continues checking the synopses and then decides for 
some particular book. After leaving the shop, the unknown song is still sounding in his mind. “I 
wonder what song this is; sounds like Scottish folk or something”. To satisfy his curiosity, he uses his 
mobile phone to call a music identification service and sings the parts of the melody he remembers. 
The sung excerpt is submitted to the music search engine of the service provider and a few seconds 
later an html-type message is returned, with links to brief sound summaries of the spotted songs. He 
then starts his mobile phone’s Internet browser, follows the links, listens to the first few excerpts and 
finds out that the piece he looks for belongs to the last CD of “The Battlefield Band”. He notices 
he is close to a CD store. He goes in and buys the CD. 

 

The above scenario illustrates the fact that any large music database, or, generically 
speaking, any multimedia database, is only truly useful if users can find what they are 
looking for in an efficient manner. Furthermore, it is important as well that the organi-
zation of such databases be performed as objectively and efficiently as possible. Current 
ever-expanding music repositories contain tremendous amounts of songs. For instance, 
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by 2000, “a typical database of titles (e.g., Sony Music7) contain[ed] about 500000 titles 
(…). A database containing all tonal music recordings would probably reach 4 millions 
titles. Adding ethnic music and non-western types of music would probably double or 
triple this number. Every month, about 4000 CDs [were] created in Western countries” 
[Pachet and Cazaly, 2000]. The same quoted authors also report that a music database 
such as Amazon’s8 was, by that time, organized into a taxonomy of 719 genres. These 
days, online music stores such as iTunes have repositories with over 2 million songs9. 

Presently, whether it is the case of digital music libraries, the Internet or any music 
database, search and retrieval is carried out mostly in a textual manner, based on catego-
ries such as artist, title or genre. In spite of its unquestionable usefulness and wide accep-
tance, this strategy leads to a certain number of difficulties, both for service providers, in 
what concerns the manual assignment of such tags, and customers, in terms of database 
search in transparent and intuitive ways, in accordance with users’ preferences. In effect, 
“music’s preeminent functions are social and psychological”, and so “the most useful 
retrieval indexes are those that facilitate searching in conformity with such social and 
psychological functions. Typically, such indexes will focus on stylistic, mood, and similar-
ity information” [Huron, 2000]. 

 Therefore, in order to overcome the described limitations, research is being con-
ducted in an emergent and promising field named Music Information Retrieval (MIR). 
MIR is a strongly inter-disciplinary research area that has evolved from the necessity to 
manage huge collections of digital music for “preservation, access, research and other 
uses” [Futrelle and Downie, 2003]. This is indubitably a field with tremendous potential 
for applications.  

Generally speaking, research is progressing on topics such as automatic music classi-
fication and feature extraction, audio fingerprinting, music recommendation, automatic 
music transcription, melody detection, song database indexing, music representations or 
user interface design, to name but a few. 

In particular, content analysis and similarity assessment and retrieval in audio song 
databases are receiving significant attention (e.g., [Vignoli and Pauws, 2005; Aucouturier 
and Pachet, 2004; Berenzweig et al., 2003; Tzanetakis, 2002; Pampalk, 2001; Logan and 
Salomon, 2001; Yang, 2001; Welsh et al., 1999; Bainbridge et al., 1999]).  

In some of those systems, as for example the one described in [Pampalk, 2001], 
graphical user interfaces based on the metaphor of geographic maps are employed to 
group songs according to their resemblance: islands denote musical genres, which are 
“geographically” organized in such a way that songs from similar genres are “physically” 

                                                        
7  http://www.sonymusic.com/ 
8  http://www.amazon.com/ 
9  http://www.apple.com/itunes/overview/ 
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close together.  

In others, the goal is to allow the creation of musical queries through examples sup-
plied by the user, for instance, by humming, whistling or singing the melody to search 
for - a process denominated query-by-melody (QBM) - or by specifying an excerpt analo-
gous in some way to what is being looked for, based on search criteria such as rhythm, 
genre, instrumentation or tonality - designated as query-by-example (QBE). The former 
corresponds to the scenario imagined at the beginning of this section. There, melody 
assumes particular relevance. In fact, despite other implicit tasks (such as, for example, 
song summarization), melody detection in polyphonic recordings is a basic requirement 
for query-by-melody, as will be discussed in the following paragraphs. 

1.1.1. Query-By-Example 

Regarding query-by-example, this search scheme is most useful when users do not know 
the melody, when melodies simply do not exist (e.g., in types of music such as elec-
tro-acoustic music) or when users are more interested in other musical features such as 
rhythm, tonality or even lyrics10.  

Moreover, this mechanism offers interesting possibilities for the discovery of new 
music complying with the personal, social or psychological purposes of the search 
[Vignoli and Pauws, 2005; Celma et al., 2005; Pampalk, 2001; Welsh et al., 1999]. 
Namely, a music store may recommend new music to its customers based on user prefer-
ence profiles, a movie director may look for a soundtrack that reflects the emotional con-
text of a scene or an aerobic instructor may be interested in songs with a certain tempo, 
regardless of melody or genre. This can be a daunting undertaking if we think of the 
thousands or even millions of songs, organized sometimes in tens or hundreds of differ-
ent and often non-uniform genres that many music libraries contain.  

1.1.2. Query-By-Melody and Melody Detection in Polyphonic Recordings 

As for QBM, this is an intuitive way of searching for a musical piece, since melody 
humming, whistling, “syllabbling” or singing are natural habits of humans. Furthermore, 
it frequently happens that we want to find a song and the only thing we remember is a 
small fragment of it, for example, the chorus, rather than the title or the performer.  

                                                        
10  Some music lyric search engines, e.g., LetsSingIt.com, are available on the web. However, in such sys-

tems the lyrics must be manually annotated (or provided by the authors or recording companies), 
rather than automatically extracted. This would be the ultimate goal to accomplish in this search 
strategy. Such task entails several complex research problems under the topic of automatic singing 
speech recognition. 
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Thus, several techniques have been proposed, aiming to permit song retrieval via au-
ral melodic queries, most of them hummed, i.e., query-by-humming (QBH)11, but also 
sung, i.e., query-by-singing (QBS) [Parker, 2005; Batke et al., 2004; Shih et al., 2003; Song 
et al., 2002; Chai, 2001; Birmingham et al., 2001; Bainbridge et al., 1999; Rolland et al., 
1999; Kornstadt, 1998; McNab et al., 1996b; Ghias et al., 1995; Kageyama et al., 1993].  

In effect, due to the technical idiosyncrasies of query processing, hummed queries, 
rather than whistled or sung ones, are preferred in most of the work published so far. 
This comes from the fact that sung signals are generally more difficult to analyze than 
hummed signals (namely regarding pitch12 detection13 accuracy in the processing of the 
singing voice or the treatment of octave errors, as will be discussed in Chapter 3). Hence, 
when we talk about QBM, most of the time we are actually referring to QBH. Anyway, 
we prefer the term QBM for its generality. Alternatively, systems for QBS require sung 
queries to consist of discrete notes separated by silence or to be created using particular 
syllables such as ‘ta’ or ‘da’ that are easy to segment into individual notes, as pointed out 
in [Kim et al., 2000]. 

In the implementation of robust and efficient QBM mechanisms, factors like query 
construction, melody extraction, melody representation and melody matching are crucial 
[Chai, 2001, pp. 3]. For instance, besides pitch detection accuracy, approaches must be 
robust concerning user’s imperfections in the creation of queries, e.g., singing ability, 
memory flaws, humming “off-key”, etc., [Birmingham et al., 2001]. As a consequence, in 
melody matching, melody similarity evaluation must cope with such distortions and still 
remain computationally efficient. This is a well-studied information retrieval problem, 
usually tackled by approximate string matching algorithms, e.g., [Cahill and Ó Maidín, 
2005; Hofmann-Engl, 2003; Grachten et al., 2002; Chai, 2001; Lemström and Perttu, 
2000; Orpen and Huron, 1992; Wagner and Fischer, 1974]. Distortions are also han-
dled by melody representations such as melodic contours or intervallic representations. 
These are normally used and allow for singing transpositions or distortions such as rais-
ing or lowering the pitch of a few notes [Chai, 2001, pp. 32]. Moreover, the use of mel-
ody contours is motivated by the ways humans remember music and, particularly, melo-
dies. Namely, Jay Dowling found out that melodic contours are easier to remember than 

                                                        
11  The Themefinder system [Kornstadt, 1998] only supports text format queries and so, strictly speak-

ing, is not a QBH tool: users have to manually input the text string in conformity with a specified 
format. The application constitutes a web interface to the Humdrum toolkit, a generic music repre-
sentation framework, developed by David Huron [Huron, 1997]. Anyhow, the Themefinder is very 
famous for its organization and features for symbolic data processing. 

12  For language convenience, we will use the term pitch indistinctly of fundamental frequency (F0) 
throughout this document, though the former is a perceptual variable, whereas the latter is a physi-
cal one (see Chapter 3). This “abuse” occurs in most of the related literature and, for the purposes of 
the present research work, no ambiguities arise from it. 

13  Besides “pitch detection”, other terms usually employed in the literature are pitch tracking or pitch 
estimation (regardless of using probabilistic approaches or not). 
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exact melodies [Dowling, 1978] (cited in [Chai, 2001, pp. 20]). 

In relation to melody extraction, this is a partly solved issue for many of the existing 
platforms. Indeed, almost all current QBM applications are restricted to the MIDI14 do-
main, using files where the melody is generally available in a separate channel, identified 
by labels such as “melody”, “lead” or “vocal”. Therefore, the main issues often concern 
redundancy reduction, namely theme or motive extraction. This is a complex and impor-
tant topic, which, among other advantages, allows a more efficient matching, given that 
themes are much smaller than entire pieces [Meek and Birmingham, 2001].  

However, when the melody is not explicitly separated in MIDI files, additional diffi-
culties arise. In such cases, the query can be looked for in each of the individual chan-
nels, either separate or simultaneously (e.g., [Doraisamy and Rüger, 2001; Dovey, 2001; 
Lemström and Perttu, 2000; Francu and Nevill-Manning, 2000]). Furthermore, some 
sort of monophonic reduction may be undertaken when the melody is conveyed in a 
polyphonic track. Several algorithms have been devised to identify the melody in MIDI 
files (e.g., [Uitdenbogerd, 2002; Francu and Nevill-Manning, 2000]), exploiting impor-
tant aspects of melody perception.  

Besides MIDI files, QBM can be conducted in monophonic audio as well. But de-
spite the previously mentioned difficulties, monophonic pitch detection is usually con-
sidered “practically a solved problem” [Klapuri, 2004, pp. 3]. Hence, melody extraction is 
not so complicated, at least in comparison to polyphonic performances15. 

Yet, few “real-world” songs are strictly monophonic. Instead, they enclose rich tex-
tures, often containing a soloist and harmonic and/or percussive accompaniment. This 
is the most common kind of musical material and also the one typical users are more 
interested in: polyphonic and multi-instrumental audio musical pieces, usually obtained 
from CDs or stored in audio formats such as mp3. Clarifying this point, there are several 
target audiences for music retrieval tools, each of them with specific requirements and 
needs: musicologists, composers, music librarians, music shop customers, Internet users, 
etc., [Uitdenbogerd, 2002]. By typical users we mean active listeners, having or not (cus-
tomarily not) formal musical education, who buy CDs, look for music on the Internet, 
often want to locate half-remembered songs or to discover new music with specific char-
acteristics or similarities to other work. Consequently, limiting QBM to MIDI files or 
monophonic recordings places important usability questions.  

                                                        
14  Acronym for Musical Instrument Digital Interface. MIDI files contain linear, time stamped se-

quences of events. For the purposes of this work, we can say, in simplistic words, that MIDI is a 
symbolic format for representing music. We are aware of only a few attempts towards QBM in audio 
databases, so far with incipient results, e.g., [Pikrakis and Theodoridis, 2005; Song et al., 2002]. 

15  By polyphonic music we refer to musical pieces where several sources are simultaneously present (e.g., 
vocals, guitar, percussion, etc.), rather than to the more precise theoretical concept, i.e., a type of 
music in which the individual voices move independently of one another, in contrast to monophonic 
music (one single voice) or homophonic music (in which all the voices move more or less together). 
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Despite the challenges described above for the MIDI domain, we argue that deriving 
melody representations from polyphonic audio files is a more demanding task since, in 
the MIDI realm, all the notes, as well as their timings, are already known. This simplifies 
the extraction of the melody even when it is not directly available. On the other hand, 
querying polyphonic recordings requires that some sort of melody representation be ex-
tracted beforehand, which increases the complexity level of the problem. In effect, poly-
phonic audio recordings are typically multi-timbral and have many simultaneously 
sounding notes. Additionally, several instruments (including the singing voice), each one 
with different and varying spectral properties, interfere significantly with each other, giv-
ing rise to complex spectra.  

Melody representations for polyphonic audio may be acquired in line with two basic 
strategies: the explicit extraction of melodic notes (after which melodic or intervallic con-
tours could be obtained) or the development of more abstract and goal-oriented repre-
sentations. The latter approach is pursued by Jungmin Song et al. [Song et al., 2002] in a 
system for QBH in polyphonic audio databases. Instead of explicitly extracting the mel-
ody, they define a mid-level representation consisting of a sequence of audio segments, 
each containing a set of note candidates. Then, a variation of dynamic programming is 
employed for matching the query with the melody mid-level representation. Results are, 
however, incipient. 

On the other hand, explicit melody detection, despite being more complex, allows 
for a more robust treatment of QBH. Furthermore, this representation broadens the 
range of applications, as will be described in the next subsection.  

Melody detection in polyphonic audio is then the main subject of the present disser-
tation. Although we have highlighted its relevance to QBM, the utility of melody detec-
tion is by no means limited to this application. Other possibilities are described in the 
following paragraphs. 

1.1.3. Other Applications of Melody Detection 

Besides QBM, melody detection has applications in areas such as automatic music tran-
scription, and melody transcription in particular. Automatic music transcription is 
rather time-consuming, error-prone and iterative, requiring in addition specialized skills. 
Thus, composers and music professionals could gain from automatic music transcription 
systems since these would free them for other more creative jobs. In this context, melody 
transcription, which could be viewed as a subset of full music transcription, is of particu-
lar interest, given the role played by melody in music (as will be described in the next 
chapter). In fact, users are often especially interested in the melodic part for musical 
composition purposes (e.g., for creating different versions of known songs), for learning 
or for copyright issues.  
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With respect to music education and training, automatic transcription system could 
assist students in their transcription proficiency. Such computer-aided education and 
training applications could automatically correct and evaluate users’ results, keep track of 
progress, give information on the most common types of errors and so on.  

Likewise, melody detection also opens possibilities for performance and expressive-
ness analysis. In effect, by comparing the written and the executed score, much informa-
tion can be gathered as to the precision and style of music performers. Moreover, melody 
detection would too be useful in the development of computer tools for tasks such as 
music improvisation. 

Plagiarism detection could gain from melody transcription as well. Indeed, authors 
would have the possibility of automatically comparing their copyrighted songs with new 
songs (or, conversely, their new works with existing pieces) based on melodic similarity 
measures [Grachten et al., 2002], just like queries are matched to melodies in QBM.  

As for music analysis, the melodic part contains useful information for the detection 
of motives and themes. Hence, its automatic transcription could support this task. 

Concerning metadata applications, the implementation of the melody descriptors 
defined in the MPEG-7 standard [MPEG-7, 2004] would also benefit from algorithms for 
melody detection in polyphonic audio. 

Other possible applications are offered in the field of music libraries, where it is of-
ten necessary to extract melodic descriptions directly from audio files. 

The reasons pointed out to justify the need for automatic melody detection systems 
could be the subject of some criticism based on the fact that, nowadays, music is usually 
recorded in a multi-track fashion. In this way, monophonic analysis could be conducted 
on the melody track. This possibility would open new perspectives for most of the cited 
applications, namely automatic music transcription, provided that access to that data was 
ensured. Going even farther, multi-tags could be directly supplied by music editors. 
However, even if any of these procedures was always followed from this time forth and a 
concerted policy was agreed upon between the main editors and music retailers, huge 
amounts of recorded music still needed to be processed. Furthermore, it is not clear 
whether end-users would have indiscriminate access to such multi-track or multi-tag re-
cordings. At least for the near future, we should expect music to be delivered as a mix-
ture, as happens today, rather than in separate tracks. Therefore, if, for example, a music 
student needed to transcribe a musical piece, he would either do it manually or with 
recourse to an automatic transcriber. 

1.2. Objectives and Approaches 

As referred to in the previous section, melody detection in polyphonic audio is the main 
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subject of this dissertation. Despite its various possibilities, most of the involved research 
problems are complex and still open. We certainly have many years ahead before suffi-
ciently robust, accurate and efficient melody detection algorithms become available. 

Polyphonic musical signals can be converted into symbolic formats either manually 
or, ideally, automatically. Manual conversion requires obviously substantial man-work 
and specific skills. Moreover, this is a subjective and error-prone activity. On the other 
hand, analyzing polyphonic musical waveforms is a rather complex job since such signals 
are typically multi-timbral, having many different types of instruments playing concur-
rently, with severe spectral interference between each other.  

Previous work on the extraction of symbolic representations from musical audio has 
concentrated especially on full music transcription. This demands accurate multi-pitch 
detection for the extraction of all (and nothing but) the fundamental frequencies (F0) 
present in a given song, besides requiring sound source separation in order to allocate 
each note to the respective instrument. However, the existing methodologies towards the 
mentioned problems are neither sufficiently general nor accurate. Namely, pitch detec-
tion accuracy decreases considerably as the number of sound sources increases. For that 
reason, some systems narrow the scope of the problem by imposing several constraints 
on the musical material, for example on the maximum number and type of simultaneous 
instruments or musical style.  

In this way, we follow the pragmatic approach of putting the focus on the melody16, 
no matter what other sources might be present. Rather than performing polyphonic 
pitch detection and full source separation, we propose a multi-stage mechanism comply-
ing with the principles of figure-ground organization (Section 2.2.2). 

Thus, we implement a particular multi-pitch detection methodology, where, instead 
of aiming to capture all the pitches in each time frame, we only select the most relevant 
ones for melody detection. These are assumed to be the most salient17 pitches. Then, we 
explicitly identify musical notes by creating pitch trajectories for the obtained pitch can-
didates, after which temporal trajectory segmentation is conducted with the purpose of 
separating all the individual notes contained in each track. In addition, we deal with the 
problem of ghost harmonically-related notes by incorporating perceptual cues of sound 
organization into our model, mimicking the human auditory system to some extent. As 
to the identification of the notes comprising the melody, we base our strategy on two 
main assumptions that we designate as the “salience principle” and the “melodic 

                                                        
16  From this point forth, whenever we say melody we are actually referring to the “main melody” in a 

musical ensemble. The very concept of melody can be somewhat ambiguous. Hence, we propose a 
definition that suits well the context of our work and takes away possible ambiguities (Section 2.3). 

17  Throughout this document, we will employ the term “salience” to designate the (approximate) inten-
sity (or energy) of notes, pitches or peaks. This term is preferred since it may equally well denote en-
ergies or probabilities. For example, a pitch may be salient either because its energy or its probability 
(regardless of how it is computed) is high. 
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smoothness principle”. By the salience principle, we assume that the melodic notes have, 
in general, a higher intensity in the mixture (although this is not always the case). As for 
the melodic smoothness principle, we exploit the fact that pitch intervals between suc-
cessive notes tend to be small. Finally, false notes in the obtained melody are deleted by 
discarding the ones that correspond to abrupt salience or duration reductions and by 
performing note clustering to further separate true melody notes from false positives. 

The success of any melody detection system relies strongly on the efficacy of all its 
constituent modules. Namely, since melody has a lot to do with pitch, accurate pitch 
detection is a primary objective of our work. Therefore, we study both single and 
multi-pitch extraction algorithms in order to come up with a well-motivated choice of the 
most adequate method. 

Moreover, we want to explicitly identify musical notes, contrariwise to most existing 
systems, which are mainly concerned with the extraction of predominant-pitch lines. 
Thus, musical notes must be precisely characterized, especially in terms of their timings 
and MIDI note numbers, for which the reliable creation of pitch trajectories is crucial. 
Hence, note determination is also an important objective of our work. 

After acquiring a set of musical notes, we have to identify the ones that convey the 
melody, which is the ultimate objective of our project. In effect, regardless of how reli-
able pitch detection and note determination might be, the final goal is not achieved 
unless the notes bearing the melody are correctly extracted. In other words, accurate 
melody extraction depends on the reliable detection of musical notes, which, in turn, 
requires accurate pitch detection. Meaningful overall results are only possible if basic 
features are consistently extracted and properly integrated into a unified corpus. 

1.3. Main Contributions 

In this section, we summarize the main contributions of this work and list the set of pub-
lications that originated from the research carried out. 

1.3.1. Pitch Detection 

Our system starts with a melody-oriented pitch detection algorithm where an audi-
tory-model-based pitch detector (AMPD) is employed and extended for the selection of 
multiple pitches. One of our basis assumptions is that melodic notes are usually salient 
in polyphonic mixtures, and so the strategy of selecting a few of the most intense F0s in 
each frame normally leads to positive results. However, in songs with low signal-to-noise 
ratio, peak masking occurs more prominently, mostly due to percussive sounds. Clarify-
ing this point, for the purposes of this work, we consider everything that is not part of 
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the melody, i.e., all sorts of accompaniments, either pitched or percussive, as noise. 
Thus, we define the signal-to-noise ratio (SNR) as the relation between the intensity of 
the melodic instrument and the intensity of the background. 

Experiments were also conducted towards frame-wise percussion elimination, but 
the outcome was somewhat unsatisfactory. Indeed, this is a complex task that needs fur-
ther attention in the future. Anyway, the problem was attenuated by the allowance of 
trajectory inactivity in the construction of pitch tracks, which permits the restoration of 
undetected F0s. 

Not many original developments are offered in this module. The main contributions 
pertain to the proposal, analysis and validation of a melody-oriented pitch detection 
scheme (which, basically, selects the highest peak candidates in each frame) and to a 
comparative evaluation of representative pitch detectors, employed in a musical context.  

1.3.2. From Pitches to Notes 

Unlike most other melody extraction systems, we explicitly identify musical notes, char-
acterized by specific temporal boundaries, MIDI note numbers and intensity-related lev-
els, storing as well the exact frequency values, which might be necessary for the analysis 
of performance dynamics such as vibrato18, tremolo19, glissando20 or legato21.  

In this module, several novel contributions are provided. Namely, the adopted peak 
continuation approach (proposed by another author) is adapted and extended with a 
look-ahead procedure, intended to deal with peak competition between tracks, and with 
the reassignment of lost peak candidates to reduce track sparseness. Moreover, the de-
rived pitch tracks may contain more than one single note and, therefore, must be seg-
mented. The devised track segmentation mechanism is novel, except for the use (and 
adaptation) of an onset detector previously submitted by other researchers.  

The accomplished results, despite showing that there is room for improvement, are 
positive. The main shortcomings of the algorithm come from its reliance on the defini-
tion of a minimum note duration, as well as from the current limitations of onset detec-
tion methods in polyphonic contexts. The former problem placed obstacles on the 
segmentation of pitch tracks with extreme vibrato, such as in opera pieces. The latter 
gave rise to difficulties on the accurate segmentation of consecutive notes at the same 
pitch. 

                                                        
18  Periodic changes in the pitch of a tone, typical in opera singers (a.k.a. frequency modulation). 
19  Periodic changes in the intensity of a tone, typical in opera singers (a.k.a. amplitude modulation). 
20  Frequency slide in the attack of a note. 
21  Performing style where notes are smoothly “connected” without any perceptible break between them. 
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1.3.3. Identification of Melodic Notes 

As a consequence of the employed multi-pitch detection scheme, several notes are cre-
ated, among which the melody must be identified. This is not a trivial task since several 
features of auditory organization influence the perception of melody by humans, for in-
stance in terms of the pitch, timbre and intensity content in musical ensembles. To this 
end, we have exploited aspects of intensity, where the most salient notes at each time are 
first selected, and frequency proximity, where the initially obtained melodic contour is 
smoothed out. All the developments in this module constitute novel contributions. 

The obtained results were quite satisfactory. However, in sound signals where many 
salient non-melodic notes are present, e.g., musical pieces with low SNR (according to 
our previous characterization), the melody-smoothing algorithm had more difficulties in 
replacing the erroneous notes with the melodic ones. In fact, long smooth regions are 
validated, no matter whether they contain a high number of incorrect notes or not.  

We have also devised a method for elimination of ghost harmonically-related notes. 
Here, we exploit principles of auditory organization, namely harmonicity and common 
fate. Most of the contributions in this task are original, except for the utilization (and 
adaptation) of a common modulation measure, proposed by other authors. 

Additionally, we tackled the problem of false positives. As expected, this proved to 
be a very challenging task, and consequently only slight improvements were achieved. 
Spurious accompaniment notes that appear for brief moments during pauses between 
melodic notes were tentatively resolved by avoiding abrupt salience and duration transi-
tions between consecutive notes. Then, note clustering was applied so as to separate ac-
companiment notes that are selected when the lead instrument stops. Nevertheless, note 
clustering lacked robustness. Indeed, despite overall improvements, the accuracy actually 
decayed in a few song excerpts. Moreover, the best feature set varied from excerpt to ex-
cerpt, which puts some difficulties in terms of its utilization in a general framework.  

The approach for elimination of spurious accompaniment notes is also novel. With 
regard to note clustering, this was inspired by another work on melody detection. In the 
same way, the mechanism for feature extraction is based on previous research on instru-
ment identification. In any case, the overall combined strategy is somewhat novel. 

1.3.4. List of Publications 

The main contributions of this project are summarized in the following publications: 

 

(P1)  Paiva R. P., Mendes T. and Cardoso A. (2004). “A Methodology for Detection of 
Melody in Polyphonic Musical Signals”, Proceedings of the 116th Audio Engineering 
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Society Convention – AES116, Berlin, Germany. 

(P2)  Paiva R. P., Mendes T. and Cardoso A. (2005). “An Auditory Model Based Ap-
proach for Melody Detection in Polyphonic Musical Recordings”, U. K. Wiil (ed.) 
Computer Music Modeling and Retrieval – CMMR 2004, Esbjerg, Denmark, Lecture 
Notes in Computer Science, vol. 3310, pp. 21-40. 

(P3)  Paiva R. P., Mendes T. and Cardoso A. (2005). “Segmentation of Pitch Tracks for 
Melody Detection in Polyphonic Audio”, Proceedings of the European Signal Process-
ing Conference – EUSIPCO’2005, Antalya, Turkey.  

(P4)  Paiva R. P., Mendes T. and Cardoso A. (2005). “On the Definition of Musical 
Notes from Pitch Tracks for Melody Detection in Polyphonic Recordings”, Pro-
ceedings of the International Conference on Digital Audio Effects – DAFx’05, Madrid, 
Spain. 

(P5)  Paiva R. P., Mendes T. and Cardoso A. (2005). “Exploiting Melodic Smoothness 
for Melody Detection in Polyphonic Audio”, Proceedings of the International Com-
puter Music Conference – ICMC’2005, Barcelona, Spain. 

(P6)  Paiva R. P., Mendes T. and Cardoso A. (2005). “On the Detection of Melody 
Notes in Polyphonic Audio”, Proceedings of the International Conference on Music In-
formation Retrieval – ISMIR’2005, London, UK. 

(P7)  Paiva R. P., Mendes T. and Cardoso A. (2006). “Melody Detection in Polyphonic 
Musical Signals: Exploiting Perceptual Rules, Note Salience and Melodic 
Smoothness”, Computer Music Journal, Vol. 30, No. 4 (to appear). 

 

In the first article, we presented the initial system, with preliminary pitch detection, 
note identification and melody selection modules (publication P1). In this first attempt, 
a harmonic analysis scheme based on the Short-Time Fourier Transform (STFT) was 
implemented. The attained results were not convincing and, thus, an AMPD was em-
ployed in our second paper (publication P2). 

The mechanism for note identification is described in publications P3 and P4. The 
latter is an extended version of the former, whereas, besides a more detailed description, 
a tuning compensation strategy is suggested. 

The melody smoothing algorithm and the methodology for elimination of false posi-
tives were introduced in publications P5 and P6, respectively. 

Finally, the overall system is described in a journal paper (publication P7), with par-
ticular accent on the melody identification stage. In addition, a more extensive examina-
tion of experimental results was fulfilled. 

Besides attempting to validate our work by the usual peer review process in confer-
ence and journal papers, we have also participated in two melody extraction evaluations, 
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held at the 2004 and 2005 ISMIR conferences, which aimed to provide a quantitative 
comparison of different approaches. The conducted evaluations led to the following 
publications: 

 

(TR1) Gómez E., Streich S., Ong B., Paiva R. P., Tappert S., Batke J.-M., Poliner G., 
Ellis D. and Bello J. P. (2006). A Quantitative Comparison of Different Approaches 
for Melody Extraction from Polyphonic Audio Recordings, Technical Report, Music 
Technology Group, Pompeu Fabra University, Spain. 

(U1)  Paiva R. P. (2005). “An Algorithm for Melody Detection in Polyphonic Re-
cordings”, Proceedings of the Music Information Retrieval Exchange – MIREX’2005, 
URL: http://www.music-ir.org/evaluation/mirex-results/articles/melody/paiva. 
pdf. 

 

The melody extraction evaluation that took place as part of the Audio Description 
Contest (under the framework of ISMIR’2004) is described in the technical report 
(TR1), from the Music Technology Group of Pompeu Fabra University. Namely, the 
participating algorithms, ground truth data and evaluation metrics are presented, culmi-
nating in an experimental comparative analysis of the different methods. 

As for the 2005 evaluation, a brief summary of our system is offered in paper (U1), 
published in the unreviewed online proceedings of the Music Information Retrieval 
Evaluation eXchange (MIREX’2005). 

1.4. Outline of the Dissertation 

We tackle the problem of melody detection in polyphonic audio following a multi-stage 
scheme, where a number of rule-based systems, inspired on principles from auditory 
physiology, perceptual theory and musical practice, are proposed. Our methodology 
comprises three main modules:  

i) pitch detection;  

ii) conversion of pitch sequences into musical notes (with precise temporal 
boundaries and pitches); 

iii) identification of melodic notes.  

 

The organization of this dissertation reflects the modularity of our approach, where 
each block is described in detail in a separate chapter. Two introductory chapters pre-
cede these more technical chapters. 

 

http://www.music-ir.org/evaluation/mirex-results/articles/melody/paiva
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Introductory Chapters: Chapters 1 and 2 

Chapter 1 

This is the current chapter, where we summarize the main motivations, objectives 
and contributions of this research project. 

Chapter 2 

Before describing the devised system, an overview of melody detection in polyphonic 
audio is provided in Chapter 2. We start with a brief introduction to music information 
retrieval, with particular focus on its audio branch, i.e., music content analysis.  

The topic of music content analysis and listening is then further developed, where 
the most relevant perceptual and cognitive issues pertaining to it are presented, empha-
sizing aspects of melody perception.  

Based on this discussion, and motivated by the context and assumptions of our 
work, we propose a definition of melody that suits our goals and context. 

After that, we offer an overview of some of the work on closely related topics such as 
automatic music transcription and review the state of the art on the specific melody de-
tection problem.  

We then summarize our system, describing its main constituent modules, the under-
lying assumptions and the strategies pursued.  

Finally, the employed evaluation databases and metrics are described. 

Technical Chapters: Chapters 3, 4 and 5 

The overview is followed by three more technical chapters, which contain the main 
contributions of this dissertation. Each of these chapters starts with an introductory sec-
tion with the global idea of the problem under study and the respective research status, 
after which our approach is described. Each (sub-)module is summarized in a 
(sub-)section titled “Putting It All Together”, where the entire method is condensed in 
algorithmic form. Finally, experimental results are analyzed, the main experienced diffi-
culties are discussed and suggestions for improvement are pointed out. 

Chapter 3 

In accordance with these lines, pitch detection is introduced in Chapter 3. Pitch is 
the main low-level signal feature in melody detection tasks. Substantial work has been 
devoted to this topic throughout the years, especially in the context of monophonic 
speech processing. More recently, pitch detection algorithms have been proposed to deal 
specifically with musical signals, both in monophonic and polyphonic contexts.  
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In this chapter, the employed AMPD is described in detail and compared to other 
evaluated algorithms, namely a method employing simple autocorrelation, another one 
based on spectrum autocorrelation, one more using the STFT and another one following 
a probabilistic approach. From the conducted study, the AMPD is selected, as a result of 
its better accuracy.  

In addition, mechanisms for pre and post-processing of musical signals are investi-
gated (e.g., RASTA, i.e., RelAtive SpecTrAl and enhancement of the summary autocorre-
lation function). 

Chapter 4 

The note is the fundamental representational symbol in Western music notation. 
Even so, the accurate identification of musical notes, regarded as musicological units 
with dynamic nature, is somewhat overlooked in automatic music transcription research. 
Therefore, in Chapter 4 we devise a method for quantizing the temporal sequences of 
detected pitches into discrete note symbols, characterized by precise timings and MIDI 
note numbers, besides coping with typical dynamics and performing styles.  

Our algorithm starts with the construction of a set of pitch tracks, formed by con-
necting pitch candidates with similar frequency values in consecutive frames. The objec-
tive is to find regions of stable pitches, which indicate the presence of musical notes.  

Since the derived trajectories may contain more than one note, temporal segmenta-
tion must be carried out. This is accomplished in two steps, making use of the pitch and 
salience contours of each track, i.e., frequency and salience-based segmentation. In fre-
quency-based track segmentation, the goal is to separate all notes of different pitches that 
might be included in the same trajectory, handling glissando, legato, vibrato and fre-
quency modulation in general. Concerning salience-based segmentation, the objective is 
to separate consecutive notes at the same pitch, which may have been incorrectly inter-
preted as forming one single note.  

Chapter 5 

In Chapter 5, we describe our efforts towards the identification of melodic notes in 
a mixture. Our strategy is grounded on the assumptions that the main melodic line often 
stands out in the mixture and that melodic contours are usually smooth in terms of pitch 
intervals.  

Moreover, the problem of accompaniment notes present in the obtained melody is 
dealt with by excluding the ones that correspond to abrupt salience or duration reduc-
tions and by performing note clustering to further discriminate the melody from the 
accompaniment.  

The algorithm for eliminating ghost harmonically-related notes is also discussed in 
this chapter. 
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Conclusion: Chapter 6 

Finally, we sum up the main conclusions of this work and point out possible direc-
tions for future research. This discussion is based on the main encountered difficulties 
and on the relation of this project to music information retrieval. 

Bibliography 

All cited references are listed here (journal and conference papers, books, book 
chapters, theses, online references, etc.). 

Appendices 

In Appendix A, we describe the other evaluated pitch detection methods. As will be 
seen, the auditory-model-based pitch detector was preferred over these, mainly due to its 
better overall accuracy, the reason why these were moved to an appendix. In any case, 
comparative results are presented and discussed in Section 3.6. 

In Appendix B, the song excerpts used in the evaluation of our work (and listed in 
Chapter 2) are qualitatively characterized in terms of category, solo type, polyphonic 
complexity, signal-to-noise ratio, duration, number of melody notes and other peculiari-
ties specific to each of them. 

 



 

Chapter 2  
 
MELODY DETECTION: 
CONTEXT AND OVERVIEW 

 “It is melody that enables us to distinguish one work from another. It is  

melody that human beings are innately able to reproduce by singing, hum-

ming and whistling. It is melody that makes music memorable: we are 

likely to recall a tune long after we have forgotten its text.” 

Eleanor Selfridge-Field, “Conceptual and Representational Issues in Melodic Comparison, pp. 4”, 
1998  

Melody detection is presently deserving an increasing interest by the Music In-
formation Retrieval research community. In fact, automatic melody extraction 
from polyphonic audio fills an important gap in query-by-melody systems, be-

sides having other applications in areas such as music education, composition or plagia-
rism detection. Given the relevance of melody detection to MIR, the main aspects re-
lated to both subjects are discussed in this chapter. 

Section 2.1. Music Information Retrieval (MIR) 

Under this perspective, we start with a brief introduction to music information re-
trieval, with particular accent on its audio branch, i.e., music content analysis.  

Section 2.2. Content Analysis and Music Listening 

Next, we further develop the topics of music content analysis and listening, discuss-
ing some of the perceptual and cognitive issues involved and highlighting matters of 
melody perception.  

19 
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Section 2.3. Melody Definition 

From the previous point, it becomes apparent that music listening in general, and 
melody perception in particular, are inherently subjective processes. As a consequence, 
characterizing melody in clear and unequivocal terms is not immediate. Therefore, we 
suggest a definition of melody that suits our goals and context of analysis.  

Section 2.4. Melody Detection in MIR Research 

We then address the role of melody detection in MIR research, offering an overview 
of some of the existing work on closely related matters such as automatic music tran-
scription and reviewing the state of the art on the specific melody extraction problem.  

Section 2.5. Overview of the Proposed Melody Detection System 

After introducing the state of the art, we sketch our melody detection system, de-
scribing its main constituent modules, the underlying assumptions and the strategies 
pursued.  

Section 2.6. Test Collections and Evaluation Procedures 

Finally, we describe the efforts undertaken by researchers in this field towards the 
acquisition of ground truth data and the development of evaluation metrics. 

2.1. Music Information Retrieval (MIR) 

Music Information Retrieval is an emergent and promising research area that has 
evolved from the necessity to manage huge collections of digital music for “preservation, 
access, research and other uses” [Futrelle and Downie, 2003]. 

Despite the surge of interest in recent years, the idea of music information retrieval 
dates back to the 1960’s, where the potential of applying automatic information retrieval 
techniques to music was recognized [Kassler, 1966] (cited in [Uitdenbogerd et al., 2000]). 
Moreover, we can look at incipit and theme indexes, e.g., Harold Barlow and Sam Mor-
ganstern’s dictionary of musical themes [Barlow and Morganstern, 1948] (cited in 
[Uitdenbogerd et al., 2000]), as the precursors of computer-based MIR.  

The current ever-increasing awareness given to MIR research is a direct consequence 
of the explosion of the EMD industry, promoted by the generalized access to musical 
materials in digital form (with particular emphasis on compact audio formats with CD or 
near CD quality, such as mp3), widespread Internet availability, with increasing band-
width at reduced costs in domestic connections, and by the creation of online 
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peer-to-peer services such as Napster, Shareazaa or Kazaa.  

During the 1990’s, music information retrieval became a topic of growing interest, 
for example in areas such as query-by-humming. This trend has continued and these days 
MIR has established itself as an important interdisciplinary research field of its own, with 
dedicated conferences and research laboratories spread all over the world. Particularly, 
the MIR community gathered for the first time in 2000, during the 1st International 
Symposium on Music Information Retrieval – ISMIR’200022, and from that time forth 
with a yearly periodicity.  

2.1.1. MIR applications 

As referred to in the previous chapter, MIR is unquestionably an area with tremendous 
application potential. Subjects such as automatic music classification and feature extrac-
tion, audio fingerprinting, music recommendation, automatic music transcription, mel-
ody detection, song database indexing, music representations or user interface design, 
are matters of active research. 

In relation to platforms for EMD, music web crawlers, which “traverse the web and 
index music-related files” [Huron, 2000], open several possibilities. In addition, huge 
music databases would benefit from automatic classification tools, both in content label-
ing and updating, as well as from mechanisms for content-based retrieval. This also ap-
plies to multimedia databases and operating systems.  

Similarity-based retrieval tools have also a vast potential, e.g., in automatic playlist 
generation [Pauws and Wijdeven, 2005; Alghoniemy and Tewfik, 2000] and music rec-
ommendation [Celma et al., 2005; Vembu and Baumann, 2004]. 

Besides the possibilities for EMD, platforms for education and training can gain as 
well from the conducted efforts. For example, mechanisms for automatic music tran-
scription (e.g., [Ryynänen and Klapuri, 2005a; Klapuri, 2004; Bello, 2003; Sterian, 1999; 
Martin, 1996; Kashino et al., 1995]) might simplify tasks such as manual transcription, 
music composition, music analysis or evaluation of musical performances (for instance, 
by the examination of the employed dynamics or the automatic comparison of the writ-
ten score with the executed one). Furthermore, professional composers might find useful 
tools that support plagiarism detection.  

Digital music libraries are also an interesting application field of MIR research 
[Dunn, 2000; Fingerhut, 1999]. One example of this is the VARIATIONS project 
[Dunn, 2000], afterwards upgraded to Variations2. The referred project attends to both 

                                                        
22  For historical reasons, the acronym ISMIR was maintained after changing the event from a “Sympo-

sium” to a “Conference” in 2002, i.e., ISMIR was kept instead of being renamed to ICMIR. For 
more information on the early history of ISMIR, see [Byrd, 2002]. 
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technical issues, for example, content-based information retrieval, and educational ones 
such as learning activities for music instruction and evaluation of learning impact, sup-
ported by the library.  

Additionally, audio editors or audio browsers would become more “intelligent” with 
the incorporation of mechanisms for automatic indexing of music/audio files [Wold et 
al., 1996].  

As for the advertising and cinema industries, tools for mood-based music retrieval 
would certainly be beneficial, since it is often necessary to search for songs that induce a 
certain mood to the intended audience [Huron, 2000].  

Video indexing and searching could gain as well from music content analysis and, 
more generally, from audio content analysis. In effect, rather than solely inspecting im-
age frames, it is known that the analysis of the audio stream can support the detection of 
scene transitions, essential to video indexing and segmentation. For example, romantic 
scenes (love inspiring song) or violence (shots, screams) can be detected by looking only 
at audio information [Pfeiffer et al., 1996]. 

2.1.2. MIR Representations and Research Areas 

In conformity with the state of the art, Joe Futrelle and Stephen Downie proposed a 
categorization of the major MIR research themes, as well as their fundamental topics and 
investigation needs [Futrelle and Downie, 2003]. Mostly matters of basic research were 
spotted, including subjects such as representation, indexing, retrieval, user interface de-
sign, music recommendation, audio compression, feature detection, classification and 
machine learning, musical analysis, summarization, metadata, users studies, intellectual 
property rights, perception, epistemology and ontology. 

These research themes can be roughly grouped according to the kind of music repre-
sentation they employ [Futrelle and Downie, 2003]. Namely, some of the identified areas 
address topics such as melodic matching, theme extraction or musical analysis, thus re-
quiring symbolic music representations, e.g., scores or MIDI. These subjects fall under 
the symbolic MIR category. Other areas deal mostly with audio recordings or streaming 
audio, focusing on tasks such as automatic transcription, QBE or classification. This 
branch is denominated audio MIR. Visual representations are also adopted, for example 
in optical music recognition, giving rise to the visual MIR group. Finally, metadata MIR 
tackles research matters that require metadata representations, such as the cataloguing 
process in digital libraries.  

One important category of MIR research is the one termed audio MIR, which deals 
with music information retrieval in audio signals. Our work falls under this class, as it 
involves aspects of MIR more closely related to music content analysis (MCA), particularly 

 



Chapter 2.   Melody Detection: Context and Overview 23 

melody detection in polyphonic audio. In any case, the motivations of our research grasp 
features of symbolic MIR as well, since we obtain a set of musical notes that might be 
used, for example, in melody matching. 

Music content analysis focuses on the use of computers to examine recorded or per-
formed music. In other words, computers act as music-listening machines, although they 
may or may not aim to mimic the operations conducted in the human auditory system. 
For this reason, designations like Music Listening [Scheirer, 2000] or Music Scene Analysis 
[Kashino et al., 1995] are also used in the context of MCA. Anyway, in our opinion, the 
first denomination has a strong connotation to physiological and perceptual issues, 
whereas the second one relates to the recognition of the music producing objects in an 
“auditory scene”, as will be seen in Section 2.2. Therefore, we prefer the term “music 
content analysis” since it seems less restrictive and, hence, applicable to a broader range 
of problems (this is based on similar arguments presented in [Tzanetakis, 2002, pp. 4]). 

As far as musical audio is concerned, content can be looked upon both as the explicit 
audio information bore in a signal and the implicit information associated with it, namely 
its structural, rhythmic, instrumental and melodic characteristics [Gómez, 2002, pp. 9]. 
For instance, the number of instruments a song, the melodic line in a given part or the 
musical key are examples of content information.  

The need for easy and meaningful interaction with this kind of data has prompted 
research into techniques for the automatic description and handling of audio. Several of 
these methodologies attend to topics such as automatic transcription, rhythm and mel-
ody characterization, instrument recognition and genre or artist classification. Among 
these, melody plays a major role in the context of MCA. Even so, melody extraction 
from polyphonic musical recordings has received far less research attention than other 
MCA problems, such as tempo, beat and meter estimation. 

From a different perspective, music content analysis can also be viewed as a branch 
of the broader Multimedia Content Analysis field, which “refers to the computerized un-
derstanding of the semantic meanings of a multimedia document, such as a video se-
quence with an accompanying audio track” [Wang et al., 2000]. In music content analy-
sis, the accent is placed on the audio stream, namely in the analysis of musical signals.  

Most mechanisms for MCA are still in embryonic stages, mainly due to the little at-
tention conferred to this topic up until recently. In reality, despite the importance of the 
audio stream in multimedia systems, “most research and development work - such as 
videoconferencing systems, video-on-demand and multimedia databases - has focused on 
the video stream. In each of these areas, music is of minor interest. The audio track in 
videoconferencing consists of speech only. Video-on-demand typically contains a mixture 
of speech, noises and music. Often it’s interleaved with the audio stream; little work has 
been done on the extraction and specific processing of the music component. In the 
field of multimedia databases, research and development work emphasizes the indexing 
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and retrieval of still images and video rather than addressing audio issues” [Effelsberg, 
1998].  

Significantly less research work has been carried out in the audio stream of multi-
media systems, in comparison to the amount of work devoted to the textual, image and 
video streams. Furthermore, the bulk of research in audio content analysis has concen-
trated on speech processing (e.g., [Rabiner and Juang, 1993]). Indeed, the roots of re-
search in this area are in speech processing and recognition [Tzanetakis, 2002, pp. 14]. 
Only recently, researchers have started to take advantage of the potential of music in 
tasks such as video indexing or semantic analysis, e.g., [Wang et al., 2000; Minami et al., 
1998]. 

2.1.3. MIR Methodological Needs 

Research in MIR is still in its infancy, with several interesting but complex and open 
problems. In fact, the existing approaches towards the abovementioned challenges are 
still insufficient in terms of accuracy, generality and robustness.  

Moreover, MIR is a markedly inter-disciplinary field, owing background from estab-
lished areas such as information retrieval, musicology, psychoacoustics, music cognition, 
computer music, digital signal processing, automatic speech recognition, statistics, artifi-
cial intelligence, human-computer interaction, library science, publishing or law.  

Fundamental differences exist between its diverse disciplinary communities, as gen-
erally happens in any emergent multi-disciplinary subject. Nonetheless, such divergences 
must be worked out and synergies between them should be exploited. Namely, it is es-
sential that the different communities “articulate a common research agenda or agree on 
methodological principles and metrics of success” [Futrelle and Downie, 2003]. In effect, 
MIR’s richness and novelty make it a profitable terrain for research innovation but, at 
the same time, lead to a lack of consensus concerning methodological standards.  

Uniformity in evaluation strategies is an important, until recently, unfulfilled re-
quirement in MIR research: there was no universal agreement on standard benchmark 
problems and evaluation metrics, which researchers might use for comparing their re-
spective approaches. Fortunately, some efforts are now being conducted in this respect, 
as will be discussed in Section 2.1.4.  

As for users’ needs, a formal and extensive examination is also lacking. Presently, a 
few research topics have been considerably emphasized without rigorous studies regard-
ing the preferences of users. Actually, ad-hoc arguments are often proposed to motivate 
research on some matter, without a clear and profound assessment of users’ needs. Par-
ticularly, QBH is one of the predominant retrieval paradigms in MIR, based on argu-
ments that it is natural and intuitive, although there are no objective studies that sustain 
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the widespread idea that this is the modality preferred by users23 [Futrelle and Downie, 
2003]. On the other hand, researchers need that diversified platforms be developed in 
order to support the study of users’ behaviors. As Futrelle and Downie refer [Futrelle 
and Downie, 2003], this is a chicken-and-egg problem: development must be grounded 
on user’s needs but studies on the preferences and behaviors of users also depend on the 
development of techniques… In addition, meaningful studies about needs and prefer-
ences of users, as well as system evaluation, require large and consensual data collections.  

Hence, the three issues pointed out (creation of standard data collections and 
evaluation metrics, analysis of users’ needs and advances in new techniques and tools) 
should go alongside. In our opinion, a balanced position would be to go on with funda-
mental research without putting too much accent on overly specific topics. Only when 
substantial critical mass and sizeable and comprehensive test-beds are available will user 
studies become more significant and confirm or refute the continuation on specific re-
search tracks. The kind of basic research we carry out in this dissertation keeps in with 
these lines. 

2.1.4. MIR Evaluation Methodologies 

Evaluating research on music information retrieval, namely in what regards the aspects 
more intimately related to human perception, is a complex endeavor due to the inherent 
subjectivity associated with those mechanisms. This in turn makes it difficult to come up 
with definitive, unambiguous and correct answers to some of the questions involved. 

In order for the evaluation of research outcomes to be as accurate and objective as 
possible, experiments must be carefully designed, which frequently requires the realiza-
tion of user studies. For example, in QBE and QBM, performance evaluation is usually 
measured by determining the proportion of relevant returned answers. With the purpose 
of defining relevancy, human evaluators typically look at each potential answer and judge 
accordingly. A number of users are asked to personally evaluate the results, which nor-
mally consist on counting the average number of similar songs in the first 5, 10 or 20 in 
the output list. This clearly subjective metric arises as a consequence of the fuzziness 
around the concept of similarity [Orpen and Huron, 1992]. Thus, a meaningful ground 
truth would require a number of human evaluators. For this reason, detailed evaluation 
reports are often missing because of the difficulties in conducting thorough end-user 
tests. Furthermore, in genre classification tasks, large data sets whose labeling is consen-

                                                        
23  In some informal conversations with people who use the Internet frequently to look for music, we 

have noticed that the generality reacts enthusiastically to the idea of QBH. However, this could be 
just a natural reaction to a cutting-edge technology. Nothing assures that the implementation of 
QBH platforms for real-world song databases would be a success. Other aspects, such as efficiency or 
scalability, would have a strong impact on its usefulness. 
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sual, as well as standard evaluation metrics, are crucial. 

As referred to, up until recently there was no general agreement as to standard 
benchmark problems and evaluation metrics in MIR. Consequently, most of the ob-
tained results are hard to compare with related work. Different authors use different test-
beds and devise their own accuracy metrics, some of them based on questionable criteria. 
Thus, comparative studies are rare, since they would require complex systems to be im-
plemented from scratch. Additionally, the data sets employed in some works are very 
small, which raises several questions on the significance of the results. 

Fortunately, this problem is now receiving further attention. Particularly, this was 
the subject of the Workshop on the “Creation of Standardized Test Collections, Tasks 
and Metrics for Music Information Retrieval (MIR) and Music Digital Library (MDL) 
Evaluation”, which took place during the Second Joint Conference on Digital Libraries 
(JCDL’ 2002). This was also discussed in a panel held at ISMIR’2002, titled “Music In-
formation Retrieval Evaluation Frameworks” [Downie, 2002]. 

More recently, the yearly organization of the Music Information Retrieval Evaluation 
eXchange, which started in 200424, has led to the definition of a set of databases devoted 
to different specific jobs (e.g., melody extraction, genre classification, drum detection, 
etc.), as well as uniform evaluation methodologies, which researchers are able to use for 
algorithm benchmarking. Moreover, a common platform for comparison of different 
approaches is set up, which fills a very important gap in MIR research. 

Despite these initial and important efforts, much work is still needed. Speaking spe-
cifically of the research challenges involved in melody extraction, extensive and more 
comprehensive datasets are required. As will be discussed in Section 2.6, it is our opin-
ion that the existing databases are small and their content is not sufficiently diverse. 

2.2. Content Analysis and Music Listening 

As referred to in Section 2.1.2, the musical content of a piece can be looked upon as the 
implicit information enclosed in it, namely its structural, rhythmic, instrumental and 
melodic characteristics. Examples of content information include the number of instru-
ments, the melodic line conveyed in a given musical part or the key of a song.  

In the development of tools for automatic music content analysis, a purely computa-
tional model, a physiological-perceptual scheme or a mix of both can be pursued. In the 
following, we will succinctly describe these paradigms, highlighting the perceptual issues 

                                                        
24  The first worldwide MIR evaluation was held at the ISMIR’2004 conference. The performed “Audio 

Description Contest” was the precursor of the Music Information Retrieval Evaluation eXchange, 
formally set up in the following year. Anyway, in this document we designate the 2004 initiative as 
MIREX’2004. 
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entailed in the music-listening experience, regarding particularly its melodic aspects. The 
role played by higher-level cognitive processes is also briefly discussed. 

2.2.1. Music Content Analysis Paradigms 

In the computational (or black-box) approach, the focus is placed on the output results 
regardless of the method adopted to accomplish them: the goal is to construct a func-
tioning machine, no matter what techniques are employed. Purely computational models 
are pragmatically goal-oriented, since the devised algorithms are less important than the 
outcome. This is a possible advantage given that, ideally, it is possible to attain perform-
ances that surpass the ones delivered by the human auditory system. For example, tasks 
such as automatic music transcription are very difficult for humans, as will be discussed; 
accurate computer tools could, therefore, outperform human transcribers. The drawback 
is that, so far, purely black-box schemes are a long way behind the accuracy of humans in 
hearing-related problems. Furthermore, with such algorithms, e.g., neural networks, we 
are not able to grasp what the computer is actually doing. 

On the other hand, in the physiological-perceptual (or clear-box) paradigm the ob-
jective is to perceive what humans do and in the ways they do, i.e., the goal is to model 
exactly the human auditory system. This is a potential benefit since this is up until now 
the only working mechanism available. Consequently, it would be wise to comply with a 
strategy identical to the one of a working “machine”. Besides, by building up artificially 
hearing instruments, we can gain insights on how the “real-thing” works. The downside 
is that, though many aspects of the physiology of hearing have been investigated and are 
well-known and relatively consensual (mostly in the peripheral regions of the human 
auditory system), several facets of auditory perception are only superficially understood 
(these are mostly located in the brain’s central nervous system and, unlike the others, can 
be studied only indirectly). Additionally, computer models that mimic the human behav-
ior tend to be computationally expensive. 

Both paradigms have advantages and shortcomings. Either way, in the current state 
of affairs a lot could be gained from a more profound understanding of the mechanisms 
that govern auditory perception in humans, since no other system has proved to perform 
any better thus far. In our opinion, a compromise between the two possibilities should 
be the best option: computational models could be developed by exploiting both 
black-box analysis tools and available knowledge about the properties of the human audi-
tory system. Hence, the available knowledge pertaining to its functioning should, at least, 
be taken into consideration. As will be seen later on, our method adopts this so-called 
“gray-box” approach to some extent. Therefore, in the next sections we describe some of 
the features involved in perceptual sound organization, particularly the ones related to 
music and melody. 
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2.2.2. Music and Melody Perception 

Human listening comprises many layers of information analysis and processing. These 
include the treatment of low-level auditory stimuli in the ears and their organization in 
the brain, which is influenced by higher-level factors such as memory, experience and 
context information. Moreover, listening is also affected by several variables, interacting, 
cooperating and competing with each other, which makes it rather complex. In any case, 
in the context of our research, we skim the surface of some of the underlying procedures, 
knowing in advance that such a summary will miss many important aspects, thus lacking 
accuracy and completeness. A comprehensive study of the problem can be found in 
[Bregman, 1990; Handel, 1989].  

The human ear is responsible for the primary auditory sensations, which will then 
be passed on to the brain for interpretation. Without entering into too much detail on 
the physiology of the ear, it can be briefly summarized as follows (more information will 
be provided in Section 3.3): the sound that reaches the ears is converted into nervous 
impulses by the hair cells in the cochlea, due to the movements of the basilar membrane; 
the firings of a nerve connected to a particular hair cell show band-pass response to the 
sound, and so the cochlea acts as frequency analyzer; furthermore, the density of such 
firings depends on the intensity of the input signal. 

There is a wide consensus regarding these basic levels of processing. However, much 
more debate arises in relation to the way the human brain actually organizes the basic 
auditory stimuli it receives. One landmark contribution to the understanding of percep-
tual sound organization in the human auditory system is Albert Bregman’s “Auditory 
Scene Analysis” [Bregman, 1990]. In this book, the author extensively documents most 
of the available knowledge on the mechanisms involved in human listening.  

A. Auditory Scene Analysis 

Auditory scene analysis is described as the process by which humans use sound to 
create a “picture” of the sonic world around them, i.e., to build mental descriptions of 
the auditory scene. In his work, Bregman summed up the existing knowledge on the sub-
ject, performed a myriad of psychoacoustic experiments and proposed several theories 
about the ways humans perceive auditory information.  

The idea of auditory scene analysis is usually presented with recourse to the classical 
“cocktail party effect” [Handel, 1989, pp. 189]. This is related to the idea of selective at-
tention, by which we are able to focus on one conversation in the midst of other dia-
logues and noise, e.g., background music, pouring drinks, people laughing, etc.  

Albert Bregman metaphorically established a curious parallel between the audio 
waves in auditory scene analysis and water waves in a lake [Bregman, 1990, pp. 5]: “Imag-
ine that you are on the edge of a lake an a friend challenges you to play a game. The 
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game is this: Your friend digs two narrow channels up from the side of the lake. Each is a 
few feet long and a few inches wide and they are spaced a few feet apart. Halfway up each 
one, your friend stretches a handkerchief and fastens it to the sides of the channel. As 
waves reach the side of the lake they travel up the channels and cause the two handker-
chiefs to go in motion. You are allowed to look only to the handkerchiefs and from their 
motions to answer a series of questions: How many boats are there on the lake and 
where are they? Which is the most powerful one? Which one is closer? Is the wind blow-
ing? Has any large object been dropped suddenly into the lake?” 

In music content analysis, the processing mechanism, be it human or computa-
tional, performs a kind of auditory scene analysis, which we could term “music scene 
analysis”, as previously referred to. Particularly, in this dissertation the “listener” must 
capture the melody in the midst of the surrounding accompaniment.  

Melody perception is of special interest to our work. An important issue here is that, 
even though in its essence melody is nothing else than a succession of pitches in time, 
the auditory components that carry melody information somehow form an integrated 
corpus that is heard as a unity. No definitive answers on how this is conducted in the 
brain are available so far. This and other questions have long intrigued philosophers and 
scientists, who, ever since the ancient Greeks, have theorized about the modus operandi 
of the human auditory system.  

Despite this interest, research on audio perception has received less attention than 
that on the visual domain. Nevertheless, psychological studies have given evidence that 
the human auditory and visual systems, despite their numerous differences, have several 
common processing elements. In fact, phenomena such as exclusive allocation or appar-
ent motion occur both in visual and auditory processing. Thus, audio perception re-
searchers have drawn from past research in human visual perception, as it supplied an 
important frame of reference for investigation and experimentation. 

In the early part of the 20th century, a group of German psychologists, later known 
as Gestalt psychologists, suggested a number of principles that could account for the per-
ception of visual information. They derived a set of laws that seemed to regulate the ways 
the human brain groups elements in a visual scene to represent shape or form at a larger 
scale than the individual elements. Interestingly, such laws seemed to apply also to the 
perception of auditory information [Bregman, 1990, pp. 18-28, 52]. 

B. Perceptual Units 

The compositional analysis of acoustic waves is an inherently complex and ambigu-
ous task. In effect, any waveform may contain superimposed information from different 
sources, as illustrated by the cocktail party example. In this way, the distinctiveness of 
each component is lost in the composite signal.  

In order to unscramble the acoustic wave and capture the auditory objects enclosed in 
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it, the human auditory system uses relationships between the received sensory stimuli to 
partition the sound wave into such auditory objects. Bregman denominates them auditory 
streams, i.e., perceptual units that represent single events [Bregman, 1990, pp. 10]. For 
example, a sequence of similar frequencies may be combined to create the perception of 
a single musical tone.  

It seems that such partitioning is governed by a number of fairly simple rules pro-
posed by Gestalt psychologists. Generally speaking, Gestalt principles can be looked 
upon as rules of thumb that give hints on the high-level perception that results from cer-
tain low-level stimuli25. Such principles make use of the ideas of similarity, proximity, 
continuity or common fate [Handel, 1989, pp. 187; Bregman, 1990, 196-202]. Basically, 
the parts of an acoustic wave that are grouped into one perceptual unit are expected to 
be similar (e.g., in frequency, timbre and/or intensity), to be spatially or temporally close 
and to follow the same time trajectory regarding their frequency, intensity or position, 
complying with the law of Prägnanz. [Handel, 1989, pp. 187]. This law roughly says that 
“we try to experience things in as good a gestalt way as possible. In this sense, “good” can 
mean several things, such as regular, orderly, simplistic, symmetrical, etc.”26.  

These organizational cues are employed in the grouping and segregation of both se-
quential and simultaneous information [Bregman, 1990, pp. 30]. Sequential integration 
is related to the organization of consecutive acoustic elements into a single auditory ob-
ject. This can be accomplished at different levels, e.g., grouping together consecutive fre-
quencies into one tone or combing a succession of notes into a melodic line. Simultane-
ous integration refers to the process of assembling distinct acoustic elements occurring at 
the same time but at different spectral or place locations into a single perceptual unit, 
e.g., the grouping of different harmonics in the perception of a single tone. Sequential 
and simultaneous integration are not mutually exclusive. Rather, they interact and com-
pete with one another, much in the same way as the horizontal and vertical dimensions 
of written music do. 

The perceived auditory objects do not always correspond to individual sounds. For 
example, a chord, formed by the combination of simultaneously sounding notes, may be 
perceptually interpreted as a single coherent auditory object. Additionally, an entire me-
lodic phrase, consisting of a succession of several notes, usually forms an integrated unit. 
Indeed, as previously mentioned, human listening involves many layers of processing 
that combine sensory information according to diverse perceptual cues, as well as previ-
ous knowledge, experience or memory. In this way, at one level individual notes may 
correspond to individual objects, whereas at higher abstraction levels the succession of 

                                                        
25  Gestalt is the German word for shape or form. This school of psychology “interprets phenomena as 

organized wholes rather than as aggregates of distinct parts, maintaining that the whole is greater 
than the sum of its parts” (as defined in Answers.com). 

26  Answers.com: http://www.answers.com/topic/gestalt-psychology. 
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notes may form an integrated corpus. In music, this hierarchical organization of units is 
carried out based on different time scales [Bregman, 1990, pp. 72]. 

C. Sequential Integration  

The organization of sequential information relies on aspects such as proximity, simi-
larity and continuity.  

Proximity 

This cue makes use of the hypothesis that sensory elements in close proximity tend 
to be grouped together as a unit. In terms of audition, proximity can be looked upon in 
two dimensions: time and frequency [Bregman, 1990, pp. 19, 58-67]. Thus, sensory ele-
ments close together in time and/or having close frequency values might have originated 
from the same physical source.  

The importance of this cue is reflected in the fact that melodies tend to use small 
pitch intervals between consecutive notes. Violations of proximity have been used, for 
example, in the creation of auditory illusions such as fission. This is the case of so-called 
“virtual polyphonies”, present in some Baroque compositions, e.g., by Bach and Tele-
man [Bregman, 1990, pp. 464]. There, a solo instrument alternating between a high and 
a low pitch register might lead to the perception of two distinct melodic lines played 
concurrently. This results from the tendency to perceive two streams when the speed of 
succession and frequency separation between consecutive notes is sufficient.  

The principle of time-frequency proximity, as well as related musicological practices, 
motivated the development of our melody-smoothing algorithm (Section 5.4). 

Similarity 

In audition, elements that sound alike, i.e., have similar timbres, tend to be grouped 
together as a unit [Bregman, 1990, pp. 19; 92-127]. Hence, in a musical ensemble, the 
sounds from a given source are grouped together and separated from the sounds of other 
instruments. However, as we will discuss in Section 5.6, timbre is a somewhat vague con-
cept, difficult to measure physically. 

The auditory organization of physical stimuli also resorts to loudness similarity, 
though it is not as important for the perception of musical parts. 

Grouping by similarity is influenced as well by temporal proximity. In effect, the 
likelihood that similar auditory elements are part of the same sonic event is increased by 
their temporal closeness. 

Continuity 

Human perception tends to continue contours whenever the elements follow a pat-
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tern indicating a given direction. It is in this fashion that the human auditory system 
performs auditory restoration as a response to simultaneous masking. Simultaneous 
masking occurs when a loud sound covers a softer one, i.e., masks it. Nevertheless, if the 
softer sound is longer and can be heard both before and after the louder one, the former 
is often “heard through” the latter [Bregman, 1990, pp. 27, 133-136]. The inactivity time 
that is allowed in the construction of pitch tracks relates to this principle (Section 4.2). 

Associated with this point is the phenomenon of perceptual restoration [Bregman, 
1990, pp. 347]. Here, even if the softer sound is actually removed during the occurrence 
of the louder sound, it will still be perceived as an uninterrupted signal under some con-
ditions, e.g., if some of the spectral content of the louder sound is similar to the one the 
softer sound would have if present [Bregman, 1990, pp. 349].  

D. Simultaneous Integration  

Harmonicity or common fate are involved as well on the combination and segrega-
tion of simultaneous information. 

Harmonicity 

It is generally accepted that the harmonic relations between spectral components are 
very important to sound fusion [Bregman, 1990, pp. 227-248]. Here, harmoni-
cally-related spectral partials, i.e., frequency components forming a pattern of (nearly) 
integer multiples of a common fundamental frequency, tend to be grouped together. For 
instance, the spectral components of the sounds produced by pitched musical instru-
ments usually conform to a harmonic pattern that is exploited by the brain to fuse them 
into a single unit. 

Common Fate 

Sonic elements can also be fused if they “move” in the same way [Bregman, 1990, 
248-292]. Hence, cues such as common onsets or endings, where components appear 
and disappear approximately at the same time, suggest that they might be part of the 
same sonic event, and so should be combined. Namely, onset synchrony seems particu-
larly significant in the grouping of simultaneous sounds [Bregman, 1990, pp. 213-216]. 

The same indication is provided by common modulation, where elements have syn-
chronized and parallel changes in frequency or intensity. This happens, for example, in 
vibrato, where the several harmonics of a tone show parallel frequency variations. On the 
other hand, harmonically-related elements with different frequency modulations are 
usually segregated [Bregman, 1990, pp. 255].  

We take advantage of both common fate and harmonicity for merging of note can-
didates, as will be discussed in Section 5.2. 
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E. Tonal Fusion and Musical Notes 

Simultaneous integration is not solely related to the grouping of harmonics, but also 
to the fusion of concurrent sounds stemming from different sources [Bregman, 1990, pp. 
245]. Indeed, the perception of multiple simultaneous musical tones as single auditory 
objects plays an important role in music listening [Scheirer, 2000, pp. 30].  

This is frequently explored in music orchestrations, which often “force” the fusion 
of sounds from different origins into one unified perceptual element. For example, “syn-
chronous onset times and harmonic pitch relations are used to knit together sounds so 
that they are able to represent higher-level forms that could not be expressed by the 
atomic sounds separately” [Klapuri, 2004, pp. 9]. Such tonal fusion is even stronger 
when the number of shared harmonics is high. For example, the sounds produced by 
pipe organs perceptually fuse into one single percept, whose global properties are not 
merely the sum of the properties of the individual sounds.  

In those situations, multiple sounds are intentionally bound together in order that a 
single, perceptually indivisible, auditory object is perceived. Albert Bregman coined the 
term chimera to describe the perceptual construct that results from the tonal fusion of the 
individual sonic elements [Bregman, 1990, pp. 5, 459].  

Chimeric sounds that emerge, for example, by the fusion of different simultaneously 
played notes raises the question of whether or not musical notes correspond to percep-
tual constructs. In effect, in those cases musical notes do not seem to be individually 
perceived (at least without a conscious effort). Going farther in this direction, Eric 
Scheirer argues that, for most listeners, the perceptual objects created in the human 
auditory system generally have nothing to do with musical notes [Scheirer, 2000, pp. 
67-69]. This point will be further discussed in Section 4.1. 

F. Spatial Location  

Besides the listed organization principles, simultaneous and sequential integration 
are both influenced by spatial location. Cues such as interaural delays are used in the 
perception of the physical origin of sounds [Bregman, 1990, 73-82, 293-311]. Hence, 
sounds perceived as arising from the same place also tend to be fused together. This rule 
is not utilized in our work, since we only use monaural recordings given that the melody 
can be easily identified even there. 

G. Higher-Level Cognitive Aspects of Melody and Music Listening 

In the previously described mechanisms, information flows essentially bottom-up. 
Briefly, sensory data coming from low-level acoustic signals is organized in accordance 
with Gestalt principles and passed afterwards to the higher-level processing elements in 
the brain for interpretation. Bregman refers to this as primitive organization [Bregman, 
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1990, pp. 38], in the sense that it corresponds to innate, unlearned, constraints. 

However, it is generally accepted that listening also resorts to aspects dealing with 
previous knowledge, learning, memory or context. These govern voluntary attention, the 
creation of expectations and the resolution of perceptually ambiguous situations 
[Bregman, 1990, pp. 398]. For example, musical scales can be perceptually restored when 
one entire note is removed and replaced by a loud noise burst, based on the predictions 
drawn from higher-level cognitive information, e.g., memory or prior knowledge con-
cerning the properties of musical events [Bregman, 1990, pp. 372]. The organization that 
emerges from this top-down flow of information was coined the term schema-based organi-
zation by Bregman [Bregman, 1990, pp. 38]. 

In this way, comprehension is viewed as “a complex interactive process between the 
straight analysis of sensorial data and the use of hypotheses and expectations derived 
from previous knowledge” [Bello, 2003, pp. 17]. In fact, the described grouping cues, as 
well as higher-level cognitive information, are usually exploited in music-listening. Never-
theless, the functions served by memory and experience are the most difficult to simu-
late. 

Music-listening machines, and particularly melody detection systems, could certainly 
improve their accuracy by taking advantage of previous knowledge about the musical 
signal (e.g., musical key or instruments present), context information (e.g., recognition of 
repetitive patterns that could initiate listening predictions) or musicological principles 
(e.g., voice-leading rules, the set of notes usually employed in a particular key or note 
transition probabilities), besides the strict analysis of the acoustic signal.  

Progressing in this direction, David Temperley proposed an extensive rule-based sys-
tem for modeling the cognition of basic musical structures [Temperley, 2001] (cited in 
[Klapuri, 2004, pp. 6]) and David Huron developed an exhaustive study on the deriva-
tion of voice-leading rules from perceptual principles [Huron, 2001].  

Some authors adopt this mixed bottom-up and top-down architecture, for example 
in automatic music transcription [Kashino et al., 1995, Martin, 1996, Bello, 2003]. 
Daniel Ellis approaches the problem of computational auditory scene analysis under a 
prediction-driven framework that sees analysis as a “process of reconciliation between 
observed acoustic features and the predictions of an internal model of the 
sound-producing entities in the environment” [Ellis, 1996, pp. 3]. 

As will be seen later on, we also recur, up to some extent, to higher-level informa-
tion, namely in the implementation of the melodic smoothness principle. 

 

H. Competition and Cooperation 

The above rules of thumb cooperate and compete in the creation of perceptual ob-
jects [Bregman, 1990, pp. 394]. Such competition occurs as well between sequential and 

 



Chapter 2.   Melody Detection: Context and Overview 35 

simultaneous integration [Bregman, 1990, pp. 29]. 

One interesting outcome of cue competition is portrayed in Diana Deutsch’s “scale 
illusion” (cited in [Bregman, 1990, pp. 76]): if a sequence of notes goes along a descend-
ing scale and another one is ascending in such a way that their frequency ranges overlap, 
listeners perceive the upper notes as one part and the lower ones as another. This sug-
gests that frequency proximity is more important than continuity in this situation. On 
the other hand, if timbre is reinforced, one scale is heard as going down, whereas the 
other is perceived as going up [Bregman, 1990, pp. 94].  

Previous knowledge and expectations also exert influence on the creation of mental 
constructs. In the previous example, if we knew beforehand what the two possibilities 
were, we could, by selective attention, focus on each of the two hypotheses regardless of 
the apparent primitive preference for frequency proximity over continuity.  

In terms of cooperation, the tendency to combine harmonically-related stimuli is all 
the more stressed if, for example, the onsets of the individual sonic elements are very 
close in time. Therefore, these cues cooperate to form a single perceptual unit. 

I. Melody Perception Issues  

To conclude, the above rules of thumb, as well as the mechanisms of schema-based 
organization, apply to the overall auditory organization process and, necessarily, to mel-
ody perception. 

Identifying and following a melodic stream in a mixture of several different sounds 
is a problem of sound source separation. Source separation (or segregation) is the process 
of detecting and organizing a mixture of simultaneous sounds deriving from different 
physical sources according to the multiplicity of their origins. We, as human beings, are 
not able to carry out this operation all at once, but instead, we can focus our attention 
on a meaningful subset at each time. This is the case of melody tracking, where, despite 
the multiplicity of audio streams in a song (e.g., vocals, guitar, bass or percussion), we 
can easily follow the main melody. 

The emergence of such streams, and particularly the main melodic stream, is a result 
of both primitive and schema-based mechanisms in the human brain. This entails as-
pects such as time-frequency proximity, timbre similarity or even intensity similarity 
[Handel, 1989, pp. 215]. For example, melodic coherence is improved by imposing small 
pitch intervals between consecutive musical notes, which make segregation unlikely.  

An important issue involved in the perception of the main melodic stream in an en-
semble is the phenomenon of figure-ground organization in audio. This is related to the 
“tendency to perceive part of […] the auditory scene as “tightly” organized objects or 
events (the figure) standing out against a diffuse, poorly organized background (the 
ground)” [Handel, 1989, pp. 551].  
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In this respect, Leonard Meyer suggests that “the musical field can be perceived as 
containing: (1) a single figure without any ground at all, as, for instance, in a piece for 
solo flute; (2) several figures without any ground, as in a polyphonic composition in 
which the several parts are clearly segregated and are equally, or almost equally, well 
shaped; (3) one or sometimes more than one figure accompanied by a ground, as in a 
typical homophonic texture of the eighteenth or nineteenth centuries; (4) a ground 
alone, as in the introduction to a musical work - a song, for instance - where the melody 
or figure is obviously still to come; or (5) a superimposition of small motives which are 
similar but not exactly alike and which have little real independence of motion, as in so-
called heterophonic textures” [Meyer, 1956] (cited in [Tsur, 2000]). As will be seen in the 
next section, we are interested in the analysis of songs where a single figure dominates 
and is accompanied by background pitched and/or percussive instruments. 

Several aspects have an effect on the perception of the main melodic stream in en-
sembles. Namely, Robert Francès, while studying music perception in general, investi-
gated the figure-ground relationship in music [Francès, 1958] (cited in [Uitdenbogerd, 
2002, pp. 15]). Basically, the main conclusion of his studies was that a musical part is 
perceived as figure if its pitch is higher than the accompanying parts. 

However, this rule fails in some instances. For example, if the upper notes are more 
or less constant and the lower ones form a more interesting pattern, the lower notes will 
more easily catch a listener’s attention and, thus, will be heard as figure. Alexandra Uit-
denbogerd studied the problem of melody extraction in ensembles, having developed a 
set of algorithms founded on this idea (commonly referred to as “skyline” algorithms) 
[Uitdenbogerd, 2002]. Her research was carried out in the symbolic domain. 

Besides pitch level, other factors act on the perception of a part as figure, namely 
frequency proximity and intensity [Uitdenbogerd, 2002, pp. 15]. In this respect, Cristian 
Francu and Craig Nevill-Manning determined the melody in polyphonic MIDI channels 
by extracting the notes with higher energy in each time interval, calculated as a combina-
tion of the amplitude and frequency of the note [Francu and Nevill-Manning, 2000].  

In any case, the music listening and perception is not a static process. As a matter of 
fact, a listener can consciously shift his attention between different parts of the music 
ensemble based on with his cultural context, prior experience or interest. This is particu-
larly prominent and well achieved by skilled musicians [Francès, 1958] (cited in 
[Uitdenbogerd, 2002, pp. 15]). 

In our work, we recur essentially to intensity and frequency proximity issues, as will 
be described in Chapter 5. 
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2.3. Melody Definition 

Melody plays a very important role in music content analysis. Indeed, as Eleanor Sel-
fridge-Field points out, despite its close relationship to other dimensions such as rhythm 
and harmony, “it is melody that enables us to distinguish one work from another. It is 
melody that human beings are innately able to reproduce by singing, humming and 
whistling. It is melody that makes music memorable: we are likely to recall a tune long 
after we have forgotten its text” [Selfridge-Field, 1998, pp. 4]. Moreover, human beings 
are able to identify melody-corrupted songs, e.g., when notes are missing or are replaced 
by incorrect ones [Kim et al., 2000], at least up to a certain limit.  

Defining melody in clear and unequivocal terms is not trivial. In effect, the sole con-
cept of melody entails a certain subjectivity: for the same song, different people can have 
different perceptions of what the main melody is. Furthermore, the concept of melody 
encompasses various aspects [Kim et al., 2000]: melodies can be monophonic, homo-
phonic, contrapuntal; pitched or purely rhythmic; tonal or atonal; and so forth.  

Consequently, an authoritative and global definition of melody is difficult to come 
up with. Instead, several partial descriptions, comprising different facets of melodic char-
acterization, are often proposed. Some of them are more abstract, others rely on percep-
tual issues and still others are musicologically-inspired. 

The notion of melody is often associated with a sequence of pitched sounds [Gómez, 
2002]. Namely, in Basic Music27 melody is defined as “a succession of musical tones”.  

Building on the idea of sequence of pitches, in Grove Music Online28 melody is pre-
sented as “pitched sounds arranged in musical time in accordance with given cultural 
conventions and constraints” (cited in [Gómez, 2002], pp. 13). In this somewhat vague 
definition, a few subjective issues involved in the characterization of melody are unveiled, 
specifically, the “cultural conventions and constraints”.  

Other descriptions take into consideration related perceptual and emotional features. 
For example, in Wordsmyth29 melody is presented as “musical sounds in a pleasant order 
and arrangement”. Likewise, Adriano Brandão defines melody as “that aspect of music 
which ties us to certain songs. […] We, as listeners, know exactly when a melody pleases 
us or not. It is something unconscious. […] Among the musical elements, melody is the 
one that touches us deepest and the one that is more tightly connected to our innermost 
feelings.” [Brandão, 2004]. In the previous Selfridge-Field’s characterization, melody per-
ception is also intimately related to the ways in which people remember music. 

Additionally, some definitions clarify the close relationship between melody and 

                                                        
27  http://www.basicmusic.net/glossary.php 
28  http://www.grovemusic.com/ 
29  http://www.wordsmyth.net/ 
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rhythm. Namely, Frank Dorritie describes melody as “a succession of rhythms and 
pitches” [Dorritie, 2000, pp. 68]. In effect, the concept of rhythm is strongly related to 
the identification of melodies. Actually, “when identifying a melody, the listener per-
ceives not only the pitch/interval information in the melody, but how those notes corre-
spond to particular moments in time (i.e., rhythm). Rhythm is one dimension in which 
melodies in general can not be transformed [and still be recognized].” [Kim et al., 2000].  

Other definitions take advantage of the relation between melody and rhythm to fur-
ther exploit the musicological characteristics of melody. Wordsmyth provides another de-
scription where melody is “a sequence of single tones organized rhythmically into a dis-
tinct musical phrase or theme” and “a short musical composition containing one or a 
few musical ideas; song or tune”. Additionally, in the American Heritage Dictionary30, 
melody is “a rhythmically organized sequence of single tones so related to one another as 
to make up a particular phrase or idea”. In this characterization, the notions of rhythm, 
musical idea, phrase and theme are added to the basic concept of sequence of tones. Go-
ing a bit further in the direction of musical notation, Dorritie also defines melody as “a 
horizontal musical line of notation on the staff” and, by analogy to written text, “melody 
is to a musical work what a paragraph is to a composition” [Dorritie, 2000, pp. 68].  

Daniel Levitin suggests a quite broad definition of melody: he describes it as “an 
auditory object that maintains its identity under certain transformations […] along the six 
dimensions of pitch, tempo, timbre, loudness, spatial location and reverberant environ-
ment; sometimes with changes in rhythm; but rarely with changes in contour” [Levitin, 
1999] (cited in [Kim et al., 2000]). Basically, what this definition says is that melody is a 
robust feature, which can be recognized after transformations such as intensity or tempo 
changes, after transpositions, in performances by different instruments or players, in 
different styles and ornamentations or even when notes are corrupted or missing. In 
short, its robust identification depends on the stability of its contour. 

Given the subjective characterization of melody and the observed diversity in the 
previous definitions (addressing perceptual, emotional, cultural and musicological facets 
of melody), one question should now be answered: how do we define melody in the con-
text of our work? Naturally, we do not aim to contemplate all the aspects involved in the 
notion of melody. In order to narrow the scope of our research, we resort to Sel-
fridge-Field and Dorritie’s above definitions. Hence, for the purposes of this work we 
define melody (or better said, main melody) in this manner: 

 

“Melody is the dominant individual pitched line in a musical ensemble.” 

 

In this definition, a few core ideas are summarized, some of them pertaining to the 

                                                        
30  http://www.bartleby.com/61/ 
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figure-ground organization discussed before. 

First, the explicit use of the term ensemble unveils our goal of emphasizing the analy-
sis of polyphonic music, i.e., where several instruments are playing concurrently, rather 
than monophonic music, e.g., folk songs.  

Second, streams corresponding to percussion instruments are rejected, in conformity 
with the pitched requirement. Therefore, we exclude from our study styles based solely on 
percussion, such as purely rhythmic music.  

Third, we only consider the class of music where there is a dominant voice. In reality, 
since we are considering musical ensembles, it is necessary to determine what a listener 
perceives as main melody and what remains as accompaniment. In our case we assume 
that the melody is conveyed by a dominant voice, where by dominant we mean the “fig-
ure”, i.e., the part that usually stands out in a mixture due to its pitch level, intensity, 
contour pattern, etc. This is what the average listener pays attention to more intuitively, 
e.g., lead vocals in pop music, lead saxophone in jazz or the soloist in opera. In fact, 
these are the elements that “human beings are innately able to reproduce by singing, 
humming and whistling”, i.e., this is the melody according to Selfridge-Field. Thus, we 
discard pieces where counterpoint is used (e.g., choral pieces where several simultaneous 
parts compete against each other without an evident supremacy of any of them). 

Finally, through the individual line issue, we exclude from the melody the accompa-
niment parts that stand out when the lead voice is absent. In effect, in polyphonic songs 
several melodic lines are present (solo, guitar, keyboards, drums, etc.). This in turn di-
rects us to the necessity of separating the main from the accompaniment voices, although 
it can be argued that, in the perception of melody, the most prominent accompaniment 
moves to the foreground when the solo is absent. Here, we define line as a sequence of 
notes, each of them characterized by its pitch, starting time, duration, intensity and per-
formance dynamics. Additionally, we assume that the instrument carrying the melody is 
not changed during the piece (although our algorithm could cope with this situation, as 
will be clarified in Chapter 5). 

Furthermore, we limit our scope to Western tonal music in any of its genres, e.g., 
pop, rock, classical, jazz, latin, etc. Yet, we could make use of music from other cultures 
and proveniences, as well as atonal music, provided that our basic requirement is ful-
filled: the presence of a principal voice in a polyphonic audio context. On the contrary, 
music that is not melody-oriented, nor even note-oriented, is out of the scope of our 
study, e.g., electro-acoustic music. 

Without the previous constraints, several specific cases would make the automatic 
extraction of melody even more complicated, besides the inherent signal processing diffi-
culties. Some of these are listed below, based on [Nettheim, 1992] (cited in [Gómez et al., 
2003]): 

- A single line played by a single instrument or voice may be formed by move-
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ment between two or more melodic or accompaniment strands; 

- Two or more contrapuntal lines may equally well claim to bear the melody; 

- The melodic line may move from one voice to another, possibly with overlap; 

- There may be passages of figuration not properly considered as melody. 

 

The conditions above are not considered in this study. 

2.4. Melody Detection in MIR Research 

In Section 1.1, we discussed the relevance of melody detection to MIR research and 
enumerated several related applications, e.g., query-by-melody, automatic music tran-
scription (and melody transcription in particular), plagiarism detection, music education 
and training, etc. 

In this section, we present an overview of music transcription in its main variants, 
namely, monophonic, melodic31 and polyphonic transcription. Pitch detection, one of 
the most important tasks towards this end, is briefly introduced in this section and will 
be further developed in Chapter 3.  

2.4.1. Automatic Music Transcription 

Music transcription is a process that aims to convert an arbitrary musical audio signal, 
e.g., a musical recording such as an mp3 file, into a musical score, identifying pitch, tim-
ings, dynamic information and other features.  

Besides its possibilities for music composition or education and training, music tran-
scription is also particularly important for MIR research since it establishes the bridge 
between audio and symbolic MIR [Tzanetakis, 2002, pp. 15]. Indeed, typical research 
topics of symbolic MIR (theme extraction, motivic analysis, etc.) can then be carried out 
in the audio realm, once reliable transcriptions are available. 

Well-trained people can perform it, at least to some extent. However, several itera-
tions, an educated ear, experience and musical knowledge (in terms of the particular 
musical style, the instruments involved and their different playing techniques, the har-
monic and rhythmic contexts, etc.) are necessary. The same audio file must usually be 
listened to several times, in order for the transcriber to pay attention to different aspects 

                                                        
31  Monophonic transcription is sometimes termed “melody transcription”, since the only stream pre-

sent corresponds to the melody. However, in this work, we associate this term with the task of tran-
scribing the main melody in polyphonic recordings. 
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of the musical piece in each pass.  

This can be more or less complex, according to the richness of the polyphony, 
measured by the type and number of instruments in the mixture. For example, a mono-
phonic recording may require only one iteration whereas transcribing an entire sym-
phony or an ensemble with instruments with similar timbres may turn out to be impos-
sible [Gerhard, 1998, pp. 2]. Particularly, tonally fused sounds, which form a unified 
musical percept intentionally induced in some musical orchestrations, may be difficult to 
reverse-engineer, i.e., to separate into the corresponding individual musical notes, even 
for trained musicians. In effect, it is argued that trying to explicitly unveil the musical 
notes that are “hidden” in a chimeric sound is perceptually unnatural. In this sense, the 
mechanism of human music transcription must draw from a conscious mental effort, 
which, needless to say, demands substantial training and musical proficiency.  

Automatic music transcription systems are then proposed as a means to overcome 
the referred difficulties. The architecture of such systems normally comprises three main 
stages [Gerhard, 2000, pp. 16]: 

i) a frequency analysis step, in which pitch features are extracted from the original 
musical signal, typically on a frame basis;  

ii) a pitch detection stage, in which the fundamental frequencies present in each 
frame are determined;  

iii) and a score generation phase, where a final transcription of the signal is yielded.  

A. Monophonic Transcription 

Monophonic music transcription is a subset of general polyphonic music transcrip-
tion, where a single melodic line is played on a single instrument. This is often regarded 
as a “solved” problem, since monophonic pitch detection is a well-studied subject (see 
Chapter 3) and full source separation, i.e., separation of all the instruments present in 
the piece, is not necessary. 

Even so, with the purpose of fulfilling strict performance requirements, some spe-
cific issues still deserve attention, as for example the transcription of the singing voice or 
the accurate segmentation of pitch tracks into notes [Chai, 2001, pp. 47; Klapuri, 2004, 
pp. 3]. In fact, “tracking the pitch of a monophonic music passage is practically a solved 
problem but quantization of the continuous track of pitch estimates into note symbols 
with discrete pitch and timing has turned out to be a very difficult problem for some 
target signals, particularly for singing” [Klapuri, 2004, pp. 3]. Namely, the accurate iden-
tification of musical notes from sequences of pitches is frequently hard to accomplish, as 
a result of stylistic performance aspects such as vibrato, tremolo, glissando or legato. 
Thus, the accuracy in automatic transcription of the singing voice, even for single-voice 
polyphonies, is behind the one achieved by humans.  
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In addition, automatic score generation may be complex, even in a monophonic 
case. In reality, key and time signatures, measure boundaries, accidentals and dynamics 
are usually difficult to automatically determine [Gerhard, 1998, pp. 15]. Even for hu-
mans, this is often not trivial: considerable experience in music analysis and sensibility 
for particular cases is necessary.  

Therefore, many of the existing approaches do not perform transcription in a strict 
musical sense. Instead, the objective is habitually defined as the identification of the 
notes present in a given piece, e.g., for obtaining a MIDI representation. Nevertheless, 
the term transcription, as used in the literature on monophonic, polyphonic or melodic 
transcription, refers indistinctly to systems that explicitly generate scores, systems that 
output symbolic representations such as MIDI or even systems which only output se-
quences of pitches without explicit definition of note boundaries. In our work, transcrip-
tion is conducted up to the identification of musical notes, the reason why we prefer to 
use the melody detection denomination instead of transcription. 

The first complete monophonic music transcription mechanism we are aware of is 
the one devised by Martin Piszczalski and Bernard Galler [Piszczalski and Galler, 1977] 
(cited in [Gerhard, 2000], pp. 6). This work focused on instruments with a relative strong 
first harmonic (e.g., flutes), playing at a consistent tempo. The method operated on an 
STFT front-end, formulated note hypotheses based on amplitude information and iden-
tified beam groups, measures, etc., for score generation. After this first work others were 
proposed, e.g., [Askenfelt, 1979] (cited in [McNab et al., 1996b]), where a method for 
automatic transcription of folk songs was described. However, it required significant 
human intervention to correct erroneously transcribed pitches and rhythms. 

B. Polyphonic Transcription 

Performing pitch detection in a polyphonic context is a much more demanding task. 
Here, several instruments are usually playing at the same time with strong spectral inter-
ference between each other. In this way, problems such as spectral collisions32 and peak 
masking are common, placing additional obstacles to pitch detection, both in terms of 
the actual extraction of the pitches present and the determination of precise frequency 
and intensity values. Even for a simple situation such as a guitar chord, it is sometimes 
hard to detect, in an arbitrary context, all the played notes, without false positives.  

The difficulties associated with score generation are also emphasized here. Namely, 
note determination is more complicated, as a consequence of the referred pitch detec-
tion intricacies: if pitches are missing or their frequencies and intensities are not suffi-

                                                        
32 The expression “spectral collision” is used to refer to the situation where harmonic components of 

different concurrent sounds coincide in frequency, i.e., collide. In Western tonal music, this is more 
a rule than an exception. 
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ciently accurate, detection of note boundaries is not so obvious. Moreover, since instru-
ment separation (and maybe identification) is required, the complexity level increases 
substantially.  

Owing to the described difficulties, most of the existing approaches narrow the 
scope of analysis. Namely, constraints are typically imposed on the maximum polyphony, 
on the conditions for allowing simultaneous instruments (e.g., no harmonic collisions 
tolerated) and on the type of signals to analyze (e.g., artificially constructed signals such 
as random mixtures of MIDI notes, rather than “real-world” signals with realistic dynam-
ics, isolated instruments, absence of percussion, etc.). Semi-automatic methodologies, 
where human intervention is required, are also suggested.  

Earlier polyphonic transcription mechanisms (e.g., [Moorer, 1977; Chafe et al., 
1982; Chafe and Jaffe, 1986; Maher, 1989; Katayose and Inokuchi, 1989; Hawley, 
1993]) were very limited regarding the maximum permitted number of simultaneous 
sounds (the polyphony was often restricted to two voices), as well as the pitch range and 
the relationships between concurrent sounds. Higher polyphonies were tackled at the 
expense of limiting the analysis to one single well-studied instrument or by relaxing per-
formance requirements in the output.  

Only recently systems were developed, which, despite imposing still many restric-
tions, could work with polyphonies higher than two notes without being confined to one 
isolated instrument and attaining reasonable accuracy under the assumed conditions 
[Kashino et al., 1995; Martin, 1996; Sterian, 1999; de Cheveigné and Kawahara, 1999; 
Martins, 2001; Tolonen and Karjalainen, 2000; Bello, 2003; Klapuri, 2003; Ryynänen 
and Klapuri, 2005a]. However, most of the proposed methods are especially concerned 
with the detection of the correct pitches and not so much with their separation into the 
respective sources.  

In effect, musical source separation is far from being solved, despite the current mo-
tivating attempts. In this respect, source separation is only accomplished under specific 
constraints (e.g., the use of a few previously known instruments), rather than in a general 
framework. Namely, Kunio Kashino and colleagues conducted some efforts towards the 
identification of the source of each note with recourse to timbre models, based on 
pre-stored instrument tone memories [Kashino et al., 1995]. An additional drawback of a 
few transcription tools is that they only undertake pitch detection in mixtures of isolated 
tones, and hence note boundary detection is not addressed. In general, these assumedly 
classify themselves as polyphonic pitch detectors rather than automatic transcription 
systems. 

A review of some attempts towards polyphonic transcription, with particular atten-
tion to the polyphonic pitch detection process, is provided in Chapter 3. 

A complementary problem to automatic transcription is the analysis of performed 
music. In this respect, Eric Scheirer implemented an algorithm where the computer, 
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based on an audio recording and on the respective musical score, identifies differences 
between the written score and the accomplished performance [Scheirer, 1995]. Such 
differences may stem from aspects of expression (e.g., vibrato) or from execution errors 
(e.g., incorrect or missing notes). In his work, the computer acts like a novice: it can lis-
ten to the piece and follow the score, but doest not have the required transcription skills 
yet [Gerhard, 1998, pp. 2]. 

C. Melody Transcription 

As for melody transcription, the main topic of our work, this can be regarded as a 
problem in between the two previous ones.  

Indeed, with respect to pitch detection, we are solely interested in deriving the se-
quence of F0s (or notes) that convey the main melodic line. This is not as complex as 
extracting the whole set of F0s in the mixture, but it is still difficult due to the poly-
phonic context of analysis. Namely, the abovementioned peak masking and spectral col-
lision problems are also present here, with the same consequences in terms of accurate 
detection of note boundaries. In addition, despite the fact of being only necessary to 
extract the sequence of pitches corresponding to the melody, this leads in practice to 
multiple-pitch extraction. In reality, the melodic pitches are not always the most salient 
ones, as will be discussed in Chapter 3. 

Moreover, the separation of the melodic pitches/notes from the accompaniment 
should be carried out, which has turn out to be difficult. In theory, this is also a sub-
problem of polyphonic transcription, since there the individual sound sources should be 
separated. However, this is not yet achievable in a general framework, and so we can af-
firm that this task is specific to melody transcription.  

An overview of the state of the art in this fresh research topic is given in the next 
paragraphs. 

2.4.2. Overview of Research on Melody Detection 

Only little work has been dedicated to melody detection in “real-world” songs. Nonethe-
less, this is becoming a very active area in music information retrieval, confirmed by the 
amount of work devoted to the MIREX’2004 and 2005 evaluations.  

Most existing systems, including ours, are generally founded on a front-end for fre-
quency analysis (e.g., Fourier Transform, autocorrelation, auditory models, multi-rate 
filterbanks or Bayesian frameworks), peak picking and tracking (in the magnitude spec-
trum, in a summary autocorrelation function or in a pitch probability density function) 
and post-processing for melody identification (mostly rule-based methodologies taking 
advantage of perceptual rules of sound organization, musicological principles, path find-
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ing in networks of notes, etc.). One exception is [Poliner and Ellis, 2005a], where the 
authors follow a different strategy by approaching melody detection as a classification 
problem using Support Vector Machines. Additionally, in most systems, musical notes 
are not explicitly determined. Instead, melody extraction is often looked upon as a pre-
dominant-pitch detection task, where the result is a predominant pitch line. However, 
even though the outcome of most algorithms is not a “transcript” in a strict sense, the 
“melody transcription” denomination is often used, despite being somewhat misleading. 

The first work we are aware of is Masataka Goto’s Predominant-F0 Estimator 
(PreFEst) [Goto, 2000; Goto, 2001], where a probabilistic model for the detection of 
melody and bass lines is devised. The central idea is to model the short-time spectrum of 
a musical signal as a weighted mixture of adaptive tone models (these were static in the 
first version of the method [Goto, 2000]). The sound wave is first band-pass filtered, 
since it is assumed that the melody line has the most significant harmonic structure in 
middle and high frequency regions. Then, tone models, each defined with a number of 
harmonics modeled as Gaussian distributions and centered at integer multiples of the 
corresponding F0 in the spectrum, as well as their weights, are iteratively updated 
through the expectation-maximization algorithm. Since the weights of the tone models 
represent the relative prominence of every possible harmonic structure, these weights are 
interpreted as the F0’s probability density function (PDF). Salient peaks in the F0’s PDF 
in each frame are then selected as F0 candidates and tracked in a multiple-agent architec-
ture. The final F0 output will then correspond to the frequencies of the most prominent 
agent, on the basis of specific salience and reliability measures.  

One of the shortcomings of Goto’s work is that melody/accompaniment discrimina-
tion is not performed. In fact, by selecting the most likely F0 candidate in each frame, 
pitches from the accompaniment are output even when the melody is absent. Matija Ma-
rolt extended Goto’s work, aiming to cope with this limitation [Marolt, 2004]. Namely, 
he adopted the probabilistic pitch estimator proposed by Goto, after which Gaussian 
Mixture Models (GMMs) were used for clustering the different melodic lines according 
to their sources. To this end, features such as loudness, pitch stability or onset steepness 
were extracted. However, as reported by the author, the accuracy of the clustering proce-
dure varied considerably across different excerpts.  

This approach was further improved in [Marolt, 2005], with some extensions and 
simplifications to the previous work. Particularly, melodic seeds, i.e., fragments with 
well-defined melody, are identified before clustering based on their loudness. Then, the 
similarity between all melodic seeds is calculated with recourse to pitch, loudness and 
timbre features, and the computed seed matrix is used as a basis for clustering. K-means 
clustering is performed on the seed similarity matrix, with the possibility of assigning the 
same seed to more than one cluster. Moreover, cluster merging is also implemented. Me-
lodic lines are then grown from the melodic seeds by adjoining neighboring fragments, 
in a directed acyclic graph framework. Finally, the melody, i.e., the dominant cluster, is 
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searched for, according to criteria such as fragment loudness, coverage of melody over 
time and cluster consistency. 

Jana Eggink and Guy Brown suggest a methodology for extracting the melody line 
played by a solo instrument in a mixture [Eggink and Brown, 2004]. First, F0 candidates 
are identified using an STFT-based front-end. Pitch tracks are then formed and the main 
melodic path is looked for in a network comprising all possible candidates over time. 
This is supported by various local and temporal knowledge sources and subject to some 
constraints (e.g., a tone must be used from its beginning, etc.). The employed knowledge 
sources enclose features such as F0 strength, instrument likelihood, relative tone usage 
or interval likelihood, which are weighted according to their relevance. Instrument rec-
ognition receives particular attention here, and the likelihood that a particular tone cor-
responds to the solo instrument is estimated in each frame. A drawback of this mecha-
nism is that it requires the solo instrument to be known beforehand. In addition, 
frame-based solo instrument recognition, being an important component of the system, 
did not perform as accurately as needed. 

Paul Brossier makes use of a phase vocoder and harmonic comb matching for pre-
dominant-F0 extraction [Brossier, 2004]. In his algorithm, the signal is first pre-processed 
to enhance medium frequencies, while attenuating the lower and higher spectral regions. 
This is carried out with recourse to an ARMA A-weighting filter. Next, a phase vocoder 
is applied and the derived magnitude spectrum in each frame is low-pass filtered and 
normalized, in order that spurious peaks are smoothed out. Local maxima in the result-
ing spectrum are then detected and matched against a harmonic comb filter. In this way, 
the most likely F0 in each frame is identified, based on the number of matched peaks 
and the energy measured in each of the harmonics. After that, pitch tracking is per-
formed and the obtained trajectory is post-processed by way of median filtering. Heuris-
tic rules are also used, so as to restrict the pitch contour to a more continuous path. Fi-
nally, pitch candidates in silence regions, determined by a silence threshold, are dis-
carded. No explicit melody/accompaniment separation is conducted in this system. 

Graham Poliner and Daniel Ellis [Poliner and Ellis, 2005a] attend to the melody de-
tection problem as a classification task. Basically, a Support Vector Machine, trained on 
real multi-instrument recordings as well as synthesized MIDI audio, classifies each frame 
into one of the equal temperament frequencies (ETFs). To this end, the input acoustic 
vectors (acquired from the normalized STFT coefficients in each time frame) are mapped 
to the corresponding, previously labeled, target frequencies. Then, melodic/non-melodic 
discrimination is performed by energy thresholding: each frame is normalized by the 
median energy value of the song under analysis and non-melodic segments are discarded 
based on a global threshold. One attractive facet of this method is that no assumptions 
about spectral structure are undertaken, contrasting to most of the traditional ap-
proaches, which rely on particular frequency structures. 

Other systems were presented in the 2004 melody extraction evaluation, organized 
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as part of the ISMIR’2004 Audio Description Contest (also designated as MIREX’2004 
in this document) [MIREX, 2004]. Details on its melody extraction track, concerning 
particularly the participating algorithms and the evaluation schemes, are provided in 
[Gómez et al., 2006]. Two of the approaches were not published elsewhere and are briefly 
described in the following paragraphs. 

Namely, Sven Tappert and Jan-Mark Batke developed a mechanism largely inspired 
on Goto’s PreFEst, with a few adaptations especially in the tracking of agents: these con-
tain now four time frames of F0 probability vectors (two of the past, the actual and the 
upcoming frame). Then, the determination of the path of the principal F0 resorts to the 
local maxima of the F0’s PDF in the four frames. As in the original Goto’s method, this 
algorithm does not discriminate between melody and accompaniment. 

Juan Bello assumes that the melody is spectrally located in mid/high frequency re-
gions. Thus, the signal is first pre-processed via high-pass filtering, limiting in this man-
ner the analysis to the regions where the melody is more likely to be present. Next, peaks 
in the autocorrelation function (ACF) of each time frame are identified and tracked. The 
resulting melodic and non-melodic fragments are then discriminated with recourse to a 
rule-based strategy: the melodic path is the one that maximizes the energy while minimiz-
ing steep changes in the tonal sequence. 

A few other methodologies were published as unreviewed online proceedings of 
MIREX’2005 [MIREX, 2005].  

There, Emmanuel Vincent and Mark Plumbey attack the problem of predomi-
nant--pitch extraction under a Bayesian framework, based on a family of probabilistic 
waveform models [Vincent and Plumbey, 2005]. These monophonic models represent 
the short-term waveform as a sum of harmonic partials, relative to the most important F0 
in each frame, plus residual noise. A probabilistic model learned on a training set is used 
to represent the amplitudes of the partials. With respect to the residual, a psychoacousti-
cally-motivated prior is utilized. Then, for all possible F0 values, the model parameters 
are estimated by means of a maximum a posteriori criterion. Finally, the F0 posterior 
probability in each frame is computed and the corresponding maximum is selected as the 
main F0 in the respective frame. The melody/accompaniment discrimination issue is not 
addressed. 

In Karin Dressler’s approach, sinusoidal-tracks are used as the front-end for pre-
dominant-F0 extraction [Dressler, 2005]. First, spectral analysis is performed via the 
STFT, after which eligible spectral peaks are detected in each frame, based on “distinct 
spectral features”. The kernel of the algorithm is the pitch estimation module, where a 
perceptually-based magnitude weighting is carried out and the harmonic structure of the 
system is examined. Next, perceptual cues of sound organization, namely pitch frequency 
and magnitude proximity, are used to connect consecutive pitches, i.e., to create streams. 
The melodic pitch line is then identified with recourse to a rule-based scheme, where, for 
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example, tone successions with intervals above the octave are avoided and notes from 
middle or higher pitch registers are preferred. This method also resorts to the identifica-
tion of the most active frequency regions. In this way, the weights of the streams belong-
ing to such regions are increased. 

Matti Ryynänen and Anssi Klapuri adapted their polyphonic transcription system 
[Ryynänen and Klapuri, 2005a] to the melody detection task [Ryynänen and Klapuri, 
2005b]. They use an auditory model devised by Klapuri as the front-end for pitch detec-
tion [Klapuri, 2005]. There, an input signal is passed through a filterbank comprising 72 
band-pass filters (BPF), between 60 and 5.2 kHz. Each sub-band signal is compressed, 
half-wave rectified and filtered, modeling like this the behavior of the hair cells along the 
basilar membrane. Then, the STFT is computed in each band and the obtained magni-
tude spectra are summed across all frequency bands. The resulting summary spectrum is 
analyzed for F0-detection based on a bank of comb filters, in an iterative detection and 
cancellation framework. After pitch detection, the algorithm recurs to three probabilistic 
models to detect the melody: a note-event Hidden-Markov Model (HMM), a silence 
model and a musicological model. The note-event HMM calculates likelihoods for dif-
ferent notes utilizing the F0s detected in each frame. The silence model identifies the 
regions where no melody notes are sounding. Finally, in the musicological model, the 
detected F0s are used for musical key estimation, and between-note transitions are de-
cided on in accordance. The note and silence models form then a network whose opti-
mal path, i.e., the melody, is looked for by means of a token-passing algorithm.  

Comparative studies of most of the described approaches were undertaken under 
the MIREX’2004 and 2005 frameworks and will be presented in Chapter 5. 

2.5. Overview of the Proposed Melody Detection System 

As referred to in Section 1.2, the extraction of the melodic stream is the focus of our 
approach, regardless of all the other concurrent sound sources. Thus, we do not aim to 
isolate each of the instrumental lines present, i.e., we do not perform full source separa-
tion. Instead, our goal is to separate the melody from “all the rest”.  

Apart from the restrictions imposed on the existence of a melody as we have defined 
it (Section 2.3), we derive a general-purpose strategy for melody extraction in polyphonic 
audio recordings. Our system is mostly based on a bottom-up processing architecture, 
where physiological and perceptual cues of sound organization are incorporated, hence 
replicating the human auditory system to some extent. In addition, a few top-down proc-
essing elements are employed, where the reverse also applies: higher-level information is 
utilized, namely by taking advantage of the melodic smoothness principle. Previous 
knowledge regarding other common practices, e.g., the use of short ornamental notes, is 
exploited as well. 
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Figure 2.1. Melody detection system overview.  

Our approach (sketched in Figure 2.1) entails three main tasks: melody-oriented 

 



50 Chapter 2.   Melody Detection: Context and Overview  

multi-pitch extraction, detection of musical notes and identification of the notes convey-
ing the main melodic line. In the figure, the solid arrows indicate that information is 
flowing bottom-up, whereas the dashed ones denote the reverse case. 

The proposed system starts with a raw musical signal, from which low-level pitch fea-
tures are extracted. In this pitch detection stage, candidate F0s, as well as their saliences, 
are determined in each frame. These constitute the basis of possible future musical 
notes. Here, we follow a more pragmatic pitch detection strategy, which seems sufficient 
for melody detection: instead of looking for all the pitches present in each frame, as 
happens in general polyphonic pitch detectors, we only capture the ones that most likely 
carry the melody. These are assumed to be the most salient pitches, which correspond to 
the highest peaks in a pitch salience curve. Our pitch detection scheme is based on Mal-
colm Slaney and Richard Lyon’s auditory model [Slaney and Lyon, 1993]. Other algo-
rithms were also implemented and compared; however, the auditory-model-based ap-
proach proved to perform best. 

After pitch extraction, more abstract representations are derived. Namely, musical 
notes are explicitly identified in terms of pitch, intensity and onset and ending times, 
maintaining as well the information necessary for the analysis of performance dynamics 
(e.g., vibrato, glissando) or timbre. This is the goal of the second stage of the method.  

To this end, pitch tracks are first created in the Pitch Trajectory Construction (PTC) 
step, by connecting pitch candidates with similar frequency values in consecutive frames. 
This is based on the mechanism devised by Xavier Serra [Serra, 1989; Serra, 1997]. The 
essential idea is to find regions of stable pitches, which indicate the presence of musical 
notes. In order not to lose information on note dynamics, we took special care to ensure 
that phenomena such as vibrato or glissando were kept within a single track. Thus, each 
trajectory may contain more than one note and should, therefore, be segmented in time. 

The segmentation of tracks resulting from pitch trajectory construction is performed 
in two phases: frequency and salience-based segmentation. In frequency-based track seg-
mentation, the goal is to separate all notes of different pitches that might be present in 
the same trajectory, handling glissando, legato, vibrato and other types of frequency 
modulation. As for salience-based segmentation, the objective is to separate consecutive 
notes at the same pitch, which the PTC algorithm may have mistakenly interpreted as 
forming only one note. This requires trajectory segmentation according to pitch salience 
minima, which mark the temporal boundaries of each note. To increase the robustness 
of the method, note onsets are detected directly on the audio signal and used to validate 
the candidate salience minima found in each pitch track. 

In the last stage, we aim to identify the notes that convey the melody among the 
whole set of obtained notes. We found our strategy on the salience and melodic 
smoothness principles. Moreover, melody/accompaniment discrimination is attempted. 

In this way, ghost harmonically-related notes, i.e., notes whose frequency compo-
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nents are sub or super-harmonics of a true note's F0, are first eliminated. Here, we make 
use of perceptual rules of sound organization, specifically harmonicity and common fate, 
where common frequency and amplitude modulation are exploited [Bregman, 1990, pp. 
227-292]. 

Although many ghost notes are discarded at this point, a high number of 
non-melodic notes is still present. Hence, we have to extract the ones that bear the main 
melody. This is performed in conformity with the salience and melodic smoothness 
principles. In the salience principle, initial melodic note candidates are identified as cor-
responding to the most intense notes in the mixture. Besides this purely bottom-up in-
formation processing module, a top-down scheme is also used, in which musicological 
principles of tonal music composition are employed in order to smooth out the initial 
tentative melody. Namely, it is well known that small pitch intervals are preferred in 
Western tonal music. Thus, abrupt pitch transitions are examined so as to check their 
validity, in accordance with the melodic smoothness principle. 

Other common practices are explored as well, for example as regards the properties 
of intensity and duration contours. In reality, sudden intensity or duration variations are 
not usual in Western music, and so such cases suggest the presence of erroneous notes. 
Consequently, notes corresponding to fast reductions in intensity or duration are dis-
carded, as they are likely to represent false positives. Short ornamental notes are an ex-
ception, and so their possible presence is inspected. Further melody/accompaniment 
discrimination is carried out by way of note clustering. 

The abovementioned higher-level rules are implemented as post-processing stages. 
These allow for the correction of errors arising from simple low-level feature analysis, 
e.g., selecting notes solely based on their intensities. In addition, other musicological 
information is utilized, for example concerning the typical note durations in the Western 
music canon. 

The proposed system was developed in Matlab (version 7)33, except for a few 
third-party functions that were coded in the C programming language (see Section 3.6). 
Performance tests were conducted on a PC with a 3 GHz clock frequency Intel Pentium 
4 processor and 512 MB of RAM, running Microsoft Windows XP Professional, version 
2002, Service Pack 2. 

2.6. Test Collections and Evaluation Procedures 

The accurate evaluation of melody extraction systems is difficult to attain for two main 
reasons: the lack of standard, comprehensive and sizeable databases, as well as quantita-

                                                        
33  http://www.mathworks.com/products/matlab/ 
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tive evaluation procedures.  

This problem is now attenuated to some extent thanks to the MIREX initiative, 
which has given a most important contribution to fill in this gap. In 2004 and 2005, two 
different collections were devised for the comparison of melody extraction systems. Un-
fortunately, but justified by the difficulties in producing reliable ground truth data, the 
MIREX’2005 database was not made public to the research community. Therefore, the 
only entirely accessible standard compilation is the one created as part of MIREX’2004. 

2.6.1. Acquisition of Ground Truth Data 

Apart from the problems in accessing copyrighted material, one of the most complex 
issues in the development of test-beds for melody extraction evaluation is the acquisition 
of reliable and meaningful ground truth annotations. Such annotations must be ac-
quired either manually or automatically.  

Manual annotation is typically fulfilled with recourse to visual spectrogram analysis, 
where note boundaries can be identified to some extent. Naturally, this is not trivial in 
polyphonic mixtures. Hence, repetitive and localized listening of the song excerpts is 
normally executed in parallel, to support and improve the temporal accuracy of the ob-
served note boundaries.  

This is clearly a time-consuming, error-prone and subjective task. In fact, no estab-
lished standard rules have been agreed upon as to melody annotation in polyphonic au-
dio recordings34. Besides, reliable annotation of the singing voice is complicated by un-
voiced components (e.g., fricatives and plosives). In the same way, accurate identification 
of the temporal boundaries of musical notes may be complex in the presence of strong 
vibrato and legato. Increased robustness demands specialized skills and concurrent anno-
tations, which, in turn, give rise to substantial man-work. Thus, this approach is highly 
unpractical and costly. Moreover, in case exact pitches are necessary (rather than F0s 
quantized to the ETFs), manual annotation fails. 

Due to the difficulties of manual annotation, automatic strategies are required. One 
possibility is to use MIDI synthesized songs, which have the advantage of wide availabil-
ity. The main drawback comes from the artificiality of synthesized music, which usually 
simplifies the conducted analysis. In effect, synthesized music does not retain the au-
thentic acoustic complexity of genuine recordings, since important dynamics are not 
faithfully replicated. Even though such “toy” problems can give good insights on the 
kinds of techniques to research, “real-world” situations place many more difficulties that 
might not be satisfactorily dealt with by techniques proposed for artificial problems. As 

                                                        
34   A contribution towards a general framework for manual annotation of musical audio is described in 

[Lesaffre et al., 2004]. 
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an example, we developed a mechanism for frequency-based segmentation of pitch tracks 
(described in Section 4.3), motivated by the necessity to cope with realistic glissando and 
vibrato, typical in the singing voice and several musical instruments. If only synthesized 
samples had been used, the artificially-generated dynamics would be too well-behaved, 
and probably we would not have found the need to handle the encountered difficulties. 

For “real-world” songs, robust (semi-)automatic annotations can only be achieved 
when multi-tracking recordings are available. In this case, well-studied monophonic pitch 
detection and note segmentation algorithms may be employed on the melody channel. 
Pitch extraction as well as segmentation errors are, nevertheless, expected, which requires 
manual inspection and correction. Anyway, the human labor and the required skills are 
by no means comparable to the ones of manual annotation. Furthermore, exact pitch 
values, rather than quantized F0s, are obtained. This solution is, however, limited by the 
availability of copyright-free multi-track recordings, which leads in practice to small-sized 
databases. In spite of this restriction, this solution represents the best compromise for 
deriving reliable ground truth data, and was the one followed in both MIREX’2004 and 
2005 [MIREX, 2004; MIREX, 2005] (although in the MIREX’2004 set some synthetic 
samples where utilized anyway). 

Before the creation of standard test-beds, it was common that each author compiled 
his own collection, defining the intended music style, instrumentation and acoustic 
characteristics, as well as the metrics of evaluation, according to his own criteria. In this 
way, besides using the MIREX’2004 database, we have also evaluated each module of our 
melody extraction system with a test-bed we had previously assembled (Table 2.1).  

Both databases were designed taking into consideration their diversity and musical 
content35. In reality, for a meaningful evaluation to be accomplished, the musical mate-
rial should cover a variety of styles. This is necessary in order to evaluate the performance 
of melody detection systems in a general framework. 

In our test-bed (abbreviated as PDB, for personal database), we collected excerpts of 
about 6 seconds from 11 songs (the topmost ones in Table 2.1), enclosing several differ-
ent categories. The selected excerpts were manually annotated with the correct notes, in 
conformity with the abovementioned methodology. Contrariwise to our previous 
assumptions, we also selected a choral piece (ID 2), consisting of four simultaneous 
voices plus orchestral accompaniment. The idea was to study the behavior of the 
algorithm in this situation, where we defined the solo as corresponding to the soprano. 

As for the MIREX’2004 database (hereafter designated as M04), we adopted the de-
fined training set. Namely, 2 items of synthesized singing voice plus background music 
(daisy2/3), 2 items of saxophone melodic phrases with accompaniment (jazz2/3), 2 items 

                                                        
35  Further details on the used excerpts are given in  These, as well as annotation and result 

files, can be downloaded from http://www.dei.uc.pt/~ruipedro/MelodyDetection/. 
 Appendix B.
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consisting of a MIDI synthesized polyphonic sound with a predominant voice (midi1/2), 
2 items of opera singing, one with a male and another with a female soloist, plus 
orchestration, and 2 items of sung pop music plus accompaniment (pop1/4) [Gómez et 
al., 2006; MIREX, 2004]. The selected excerpts, each of around 20 seconds, were 
(semi-)automatically annotated, complying with the referred methodology (i.e., mono-
phonic pitch detection in the melodic track, using multi-track recordings). Another 10 
similar excerpts were used just for testing purposes (not used for training).  

 

ID Song Title Category Solo Type 

1 Pachelbel’s “Kanon” Classical Instrumental 

2 Handel’s “Hallelujah” Choral Vocal 

3 Enya – “Only Time” New Age Vocal 

4 Dido – “Thank You” Pop Vocal 

5 Ricky Martin – “Private Emotion” Pop Vocal 

6 Avril Lavigne – “Complicated” Pop/Rock Vocal 

7 Claudio Roditi – “Rua Dona Margarida” Jazz/Easy Instrumental 

8 Mambo Kings – “Bella Maria de Mi Alma” Bolero Instrumental 

9 Eliades Ochoa – “Chan Chan” Son Vocal 

10 Juan Luis Guerra – “Palomita Blanca” Bachata Vocal 

11 Battlefield Band – “Snow on the Hills” Scottish Folk Instrumental 

12 daisy2 Pop Vocal 

13 daisy3 Pop Vocal 

14 jazz2 Jazz Instrumental 

15 jazz3 Jazz Instrumental 

16 midi1 Pop Instrumental 

17 midi2 Folk Instrumental 

18 opera female 2 Opera Vocal 

19 opera male 3 Opera Vocal 

20 pop1 Pop Vocal 

21 pop4 Pop Vocal 

Table 2.1. Description of used song excerpts. Excerpts 1-11: personal database; excerpts 
12-12: MIREX’2004 training set. 
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Additionally, we evaluated the algorithm on the MIREX’2005 database (25 excerpts 
of around 10 to 40 seconds). The collected audio files were not made public and so only 
average results are provided (Section 5.8). 

The songs in both databases contain a solo (either vocal or instrumental), which was 
defined as the target melody, plus accompaniment parts (guitar, bass, percussion, other 
vocals, etc.). Furthermore, we have identified a few other requirements, particularly while 
devising our personal test set, as follows:  

i) absence of the solo in a few time intervals, in order to evaluate me-
lodic/non-melodic discrimination capabilities of the system; 

ii) existence of octave-related notes, necessary to assess the robustness of the 
method against octave errors (besides the ones that occur due to the selection of 
harmonic peaks in the pitch detection stage - Chapter 3); 

iii) occurrence of intense non-melodic notes and percussion, an important aspect to 
test as a result of our idea of selecting the most salient notes at each moment; 
this is related to the signal-to-noise ratio of the piece under study. As previously 
referred to, we define SNR as the relation between the intensity of the melodic 
instrument and the intensity of the background. 

iv) presence of notes with real dynamics (glissando, legato, vibrato, tremolo and 
other sorts of frequency and amplitude modulation), as well as consecutive 
notes at the same pitch, with the purpose of evaluating note determination ac-
curacy; to this end, different types of instruments were utilized, including the 
singing voice, rather than constraining the algorithm to a particular instrument. 

 

We employed 16-bit Pulse Code Modulation wave files with monaural recordings, 
sampled at 44.1 kHz (CD quality), except for the ones in our test-bed, where the sam-
pling rate was 22.05 kHz. We defined this sampling rate because it proved sufficient and 
was computationally more efficient. Anyway, a sampling rate of 44.1 kHz was specified in 
both MIREX’2004 and 2005. 

Although the used material is already quite valuable for evaluation, expressive con-
clusions can only be drawn if sizeable data sets are assembled. For instance, it is difficult 
to conduct analysis on style dependencies when only a few jazz or pop excerpts are avail-
able. However, many practical difficulties are involved here, as it was described. 

2.6.2. Evaluation Metrics 

As for evaluation procedures, standard and meaningful quantitative metrics are indis-
pensable as well.  
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Depending on the application, the melody might be output as a sequence of notes 
or as a continuous pitch contour. For example, in tasks such as audio-to-midi conversion 
or query-by-humming, notes should be explicitly determined. In other jobs, e.g., analysis 
of performance dynamics (vibrato, glissando, etc.), pitch contours are preferred.  

In our system, we are particularly interested in extracting musical notes, although 
pitch track contours are also accessible. Moreover, in our test-bed, we do not know the 
exact target frequencies and so we measure MIDI note extraction accuracy. Concerning 
the M04 database, since both exact frequencies and quantized notes are available, the 
two possibilities are evaluated. 

A. Pitch Contour Accuracy 

Regarding pitch contour accuracy, the MIREX initiative gave, once again, a crucial 
impulse with the definition of a number of metrics for evaluation of melody extraction 
algorithms. These metrics take into account aspects such as raw and chroma pitch accu-
racy, the occurrence of octave errors or the melodic/non-melodic discrimination ability, 
in a frame-based analysis [Gómez et al., 2006].  

Overall Raw Pitch Accuracy (ORPA) 

This metric consists on a frame-wise comparison of the annotated and the extracted 
pitch contours. Given that musical pitches in the equal temperament tuning are distrib-
uted along a logarithmic scale (e.g., [Martins, 2001, pp. 75]), the F0s in Hz units, fHz, are 
converted to cents36, fcent, according to (2.1) [Gómez et al., 2006]. This applies to both the 
annotated and the extracted F0s.  
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Then, the pitch error in each frame is measured by averaging the absolute difference 
between the annotated pitch value and the extracted one. This error is bounded to a 
maximum of one semitone, i.e., 100 cents, as in (2.2):  
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36  Briefly, the basic musical interval in the equal temperament scale is the cent. An interval of 100 cents 

is a semitone and 1200 cents form an octave.  
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where  and  denote, respectively, the extracted and annotated F0s in the i[ ]ext
centf i [ ]ref

centf i th 
frame, and err[i] stands for the absolute pitch detection error in the same frame37. 

As a convention, non-melodic frames are assigned target frequencies of 0 Hz. There-
fore, in case of inaccurate melody/accompaniment discrimination, the error will gener-
ally be maximum in such frames (i.e., 100). 

The final score (on a 0-100 scale) is obtained by subtracting the bounded mean abso-
lute difference from 100, as in (2.3) [Gómez et al., 2006]. There, N stands for the total 
number of frames in the excerpt under analysis. 
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In the described evaluation methodology, each frame contributes to the final result 
with the same weight. In this way, this metric evaluates pitch detection performance us-
ing both melodic and non-melodic frames, thus indirectly evaluating the capability of the 
system to separate the melody from the accompaniment. Hence, systems with very good 
pitch detection accuracy but insufficient melodic/non-melodic discrimination abilities 
will be penalized.  

Melodic Raw Pitch Accuracy (MRPA) 

In order to evaluate pitch detection performance taking into consideration only the 
melodic frames (i.e., ignoring melodic/non-melodic discrimination), the same score is 
computed, this time using only those frames. Formally, it comes (2.4): 
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N ∈

= − ⋅ ∑  (2.4) 

where Nm stands for the number of annotated melodic frames. 

Melodic Chroma Pitch Accuracy (MCPA) 

This metric is similar to the previous one, except that octave errors, a common prob-
lem in pitch detection algorithms, are now disregarded.  

Here, both the annotated and the extracted F0 values are mapped to the range of 
one octave before calculating the absolute error, according to (2.5):  

[ ] [ ]( ) [ ]100 mod ,1200 , : 0ext ext ext
chroma cent centf i f i i f i= + ≠  (2.5) 

                                                        
37  In terms of notation, we follow the common practice of using square brackets for the indexes of 

discrete variables (as in err[i]) and parentheses for continuous ones. 
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There,  denotes the chroma values of the melodic F0s, i.e., the original values 
mapped to the range of one octave. The chroma annotated F0 is derived likewise. In 
(2.5), the 100 offset was set in order to prevent chroma values of 0 cents for multiples of 
1200, which would be confused with the target values for non-melodic frames. 

ext
chromaf

The errors and score are then calculated as before, i.e., according to (2.2) and (2.3). 
However, since the maximum error is now half an octave, error values above 600 cents 
must be corrected following a “circular reasoning”. It comes then (2.6): 
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 (2.6) 

where errcircular[i] denotes the circular error in frame i. 

B. Note Extraction Accuracy 

As for note extraction accuracy, metrics based on the percentage of correctly ex-
tracted notes, as well as on the edit distance, can be used.  

Percentage of Correct Frames 

With respect to note accuracy, we could simply count the number of correctly ex-
tracted notes and divide it by the total number of annotated ones. But in order to ac-
complish a more precise figure that could cope with notes with different lengths, dura-
tion mismatches, etc., we decided to compute the note accuracy metric as the percentage 
of correctly identified frames. There, the target and the extracted frequency values in 
each frame are defined as the ETFs of the corresponding notes. The error and overall 
score are then calculated in the same described manner. 

Thus, we define three metrics, related to the previous ones: melodic raw note accuracy 
(MRNA), melodic chroma note accuracy (MCNA) and overall raw note accuracy (ORNA). 

Since we do not know the exact target frequency values for the excerpts in our test-
bed, we employ preferably note metrics. Even so, pitch performance figures are also pro-
vided for completeness and for comparison with other melody extraction systems that 
extract pitch contours rather than melodic notes. 

Melodic Similarity Metric (MSM) 

Besides this approach, another note-based evaluation is proposed in [Gómez et al., 
2006; MIREX, 2004]. There, an edit distance between the extracted and the annotated 
melodies is computed as the cost of transforming one melody into the other. To this 
end, different penalizations are assigned to the required transformation operations, 
namely, insertions, deletions and substitutions. In the MIREX’2004 evaluation, the edit 
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distance was obtained as described in [Grachten et al., 2002].  

The main disadvantage of this measure comes from the difficulty in interpreting the 
resulting numbers in absolute terms. For example, it is difficult to determine the percep-
tual significance of a distance of 5. Nevertheless, we always know that a distance of 4 is 
better than a distance of 5. Thus, this metric is more adequate for relative scales, i.e., for 
comparing the performance of different algorithms regardless of the absolute meaning of 
the attained values. For this reason, we will not use it in the evaluation of our system but 
will present the results achieved in the MIREX’2004 evaluation, where it was computed.  

Anyway, despite the importance of explicitly identifying the musical notes in a song, 
this is a somewhat underestimated topic in the field of melody detection [Gómez et al., 
2006] (see Chapter 4), attested by the absence of note-oriented metrics in the 
MIREX’2005 evaluation. In effect, few existing methods address this topic.  

C. Other Melody Discrimination Metrics 

Finally, we calculate two other statistics in order to evaluate the ability of the system 
to separate the melody from the accompaniment, namely recall and precision. 

Recall 

 Recall is the percentage of annotated non-melodic frames that the system classifies 
correctly as non-melodic. Formally, it comes (2.7):  

=
+

TN
recall

TN FP
 (2.7) 

where TN (True Negatives) stands for the number of non-melodic frames correctly classi-
fied as non-melodic and FP (False Positives) denotes the number of non-melodic frames 
erroneously classified as melodic. Hence, TN+FP is the total number of annotated 
non-melodic frames. 

Precision 

Precision is the percentage of extracted non-melodic frames that are indeed 
non-melodic. Formally, it turns out (2.8):  

=
+

TN
precision

TN FN
 (2.8) 

There, FN (False Negatives) denotes the number of melodic frames erroneously clas-
sified as non-melodic. Thus, TN+FN is the total number of frames classified as 
non-melodic by the system. 

 



 

 



 

Chapter 3  
 
PITCH DETECTION 

 “Some vibratory impulses or motions causing a percussion on the ear return 

with greater speed than others. Consequently, they have a greater number 

of vibrations in a given time, while others are repeated slowly, and conse-

quently are less frequent for a given length of time. The quick returns and 

greater number of such impulses produce the highest sounds, while the 

slower, which have fewer vibrations, produce the lower.” 

Euclid (365 BC - 275 BC), “Elements of Music, Introduction to the Section of the Canon” 

Pitch is the main low-level feature in melody detection. Much work has been de-
voted to pitch detection throughout the years, mostly in the analysis of mono-
phonic speech signals. More recently, pitch detection methodologies have been 

devised to deal specifically with musical signals, both in monophonic and polyphonic 
contexts. Such approaches are discussed in this chapter, with the purpose of defining a 
pitch detection strategy that might be adequate to our ultimate melody detection goals. 
Namely, the purpose of the first stage of our system (in Figure 2.1) is to capture the most 
salient pitch candidates at each time, which constitute the basis of possible future notes.  

The fact that our final objective is melody detection would probably suggest that ex-
tracting the most prominent pitch at each time would suffice. However, since we are 
working in a polyphonic context, pitches from the accompaniment might compete for 
predominance with the ones from the melody, being alternately selected. Furthermore, 
ghost pitch candidates that are super or sub-harmonics of true pitches might be selected 
as well, causing octave (or, generally speaking, harmonic) errors. Therefore, it is insuffi-
cient to select only one fundamental frequency at each time. Instead, several pitch can-
didates must be picked up so that the one corresponding to the melody is likely to be 
present. 

61 
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Section 3.1. Introduction  

We start this chapter with some context information on the topic of pitch detection. 
Namely, the concepts of harmonic sounds, fundamental frequency and pitch are first 
introduced. The pitch detection mechanism is then outlined, briefly describing its three 
main phases: pre-processing, extraction and post-processing. Finally, we review some of 
the existing strategies for both monophonic and polyphonic pitch extraction.  

Section 3.2. Pre-Processing: RASTA Processing  

We then address the problem of additive and convolutive noise suppression in mu-
sical signals. Here, we describe an algorithm proposed by Anssi Klapuri [Klapuri, 2003], 
based on the principles of RASTA processing [Hermansky et al., 1993]. 

Section 3.3. Extraction: Auditory-Model-based Pitch Detector  

We have analyzed, implemented and compared different types of pitch detectors. 
From the conducted study, an auditory-model-based approach (using Slaney and Lyon’s 
auditory model [Slaney and Lyon, 1993]) is chosen due to its improved detection accu-
racy. This pitch detector is discussed in detail in this section, namely its main compo-
nents: the ear model, channel periodicity analysis, periodicity summarization (leading to 
a summary autocorrelation function – SACF) and salient peak detection. The other 
evaluated pitch detection methods are described in Appendix A.  

Section 3.4. Post-Processing: SACF Enhancement  

The last phase of pitch detection is described in this section. Here, we employ the 
algorithm conceived in [Tolonen and Karjalainen, 2000]. The idea is to enhance the 
SACF, aiming to remove much of the noisy and redundant information in it, namely 
peaks corresponding to sub or super-harmonics of the fundamental.  

Section 3.5. Putting It All Together  

The complete pitch detection procedure is summarized in algorithmic form and 
model parameters are listed in this section. 

Section 3.6. Experimental Results, Analysis and Conclusions 

Finally, experimental results relating to this module are presented. Moreover, a 
comparative analysis of the evaluated pitch detectors is conducted. The main advantages 
and shortcomings of the followed approach are discussed and pointers for future im-
provements are provided. 
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3.1. Introduction 

Before attending to the problem of pitch detection, it is important to clarify its concept. 
This is carried out in the next subsections, after which different methods for single and 
multiple-pitch detection are reviewed. 

3.1.1. Harmonic Sounds, Fundamental Frequency and Pitch 

Pitch is classically defined as the tonal height of a note, i.e., “that attribute of auditory 
sensation in terms of which sounds may be ordered on a scale extending from low to 
high” [ANSI, 1994]. Therefore, a pure tone of 500 Hz has a higher pitch than a pure 
tone of 400 Hz. This example suggests a connection between pitch and frequency. In 
fact, pitch is the perceptual correlate of the fundamental frequency of a tone and is often 
described as “the perceived F0 of a sound”.  

It is common to distinguish between physical and perceptual properties of musical 
sounds. Namely, “physical properties of sounds are those that can be measured directly 
using scientific instruments”, whereas “the perceptual attributes of sounds are those that 
a human listener associates with the sound” [Scheirer, 2000, pp. 53]. Some of these per-
ceptual variables are immediately correlated to physical ones; this is the case of pitch and 
fundamental frequency. 

The concept of fundamental frequency can be best explained with recourse to the 
idea of harmonic sound. Briefly, a harmonic sound is one that can be decomposed into a 
sum of sine waves whose frequencies are (approximately) integer multiples of a frequency 
F0. This frequency is the fundamental frequency and the integer multiple frequencies are 
named harmonics. In this way, harmonic sounds are periodic (or “almost” periodic, as 
described in the following paragraphs). 

From the sinusoidal model, it transpires that, besides being periodic, harmonic 
sounds have a spectral structure where the outstanding frequency components, i.e., F0 
and harmonics, are regularly spaced. This is illustrated in Figure 3.1 for a saxophone 
sound with an F0 of around 370 Hz and a corresponding period of 2.7 msec.  

As can be noticed in Figure 3.1a, the signals of real-word harmonic sounds, gener-
ated for example by so-called pitched musical instruments (e.g., woodwind, string, reed 
or brass instruments, the human singing voice, etc.) are not strictly periodic; instead, 
their cycles are slightly different from each other. Hence, they are denominated 
pseudo-periodic signals. Nevertheless, definite pitches can be assigned to the sounds they 
produce. 

In contrast, non-harmonic sounds such as the ones produced by most percussive in-
struments (especially in the class of membranophones, e.g., snare drums) do not show 
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clear periodicity and, thus, are not the subject of F0 detection. These are termed un-
pitched instruments, since their sounds contain complex frequencies from which no 
definite pitch can be discerned. 
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Figure 3.1. Time and frequency-domain illustration of a harmonic sound. 

One notable exception concerns sounds without a regular harmonic structure, but 
that are nearly periodic. This is the case of mallet percussion instruments (e.g., xylo-
phone, marimba), which produce non-harmonic pitched sounds [Klapuri, 2004, pp. 22]. 
Typically, such instruments do not produce harmonic overtones, although a few partials 
are close to integer multiples of the F0. 

Additionally, in an ideal harmonic sound the frequencies of the harmonics are exact 
integer multiples of the F0. However, in real-world sounds the harmonics do not per-
fectly match their theoretical values; instead, they depart somewhat from their ideal fre-
quencies - a phenomenon designated as inharmonicity, i.e., non-ideal harmonicity. For 
instance, in the case of stretched strings, e.g., in pianos, higher-order harmonics are 
shifted upwards in frequency by an almost constant factor [Klapuri, 2004, pp. 22]. 

Inharmonicity is one of the factors that give each sound a particular timbre, as will 
be seen in Section 5.6. Anyway, although perfect harmonicity does not occur in practice, 
the general structure of musical sound spectra is similar to the one in Figure 3.1. 

As mentioned, pitch is the perceptual correlate of fundamental frequency. The per-
ception of a pitch frequency depends on the F0 of the sound, but also on its intensity, as 
well as on the listener and environment. Perceived pitches increase about one octave 
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with every doubling in F0, and so pitch frequencies are related to the logarithm of F0 
values. This relationship is not strictly logarithmic, since above 1000 Hz F0 doublings 
lead to the perception of an interval slightly less than an octave [Gerhard, 2000, pp. 16]. 
Moreover, the relationship between F0 and pitch changes as well with sound intensity 
and harmonic content. For example, the pitch perception of two signals with equal F0 
may be different, for example, in case one of them shows perfect harmonicity whereas in 
the other the harmonics deviate somewhat from their ideal theoretical values. Indeed, 
harmonicity concurs to pitch distinctness [Gerhard, 2003, pp. 2]. 

One of the most interesting examples of the difference between pitch and F0 is the 
phenomenon of the missing fundamental [Bregman, 1990, pp. 237]. In effect, if, for 
instance, a tone is created with only the 3rd to 5th harmonics, the F0 that is common to 
those harmonics is still “heard” despite its absence in the spectrum. This implies that, for 
pitch perception, the frequency spectrum of the signal is at least as important as the F0. 

The centrality of pitch in hearing is attested by the fact that the human auditory sys-
tem tries to assign a pitch to almost all kind of acoustic signals, either harmonic or not. 
Besides (pseudo-)periodic signals, noise sounds can sometimes be matched with a sinu-
soid of a specific frequency. For example, if we take a random noise signal and amplitude 
modulate it, a pitch frequency is perceived, which corresponds to the modulating fre-
quency. In addition, the auditory system may also assign a pitch to sounds that are nei-
ther evidently periodic nor show a regular spectral structure, e.g., bells or vibrating mem-
branes. In reality, the human auditory system seems to have a natural tendency to com-
pact certain aspects of sound events by using a single frequency [Klapuri, 2004, pp. 21]. 

From the previous description, it turns out that pitch and fundamental frequency 
are two related yet different concepts. Nevertheless, the two terms are frequently em-
ployed as synonyms in the pitch detection literature, although most of the work in this 
field is actually concerned to F0 extraction. We too use both expressions interchangeably 
throughout the text. In this way, pitched sounds are assumed to be the ones that have a 
clear fundamental frequency, as generally happens in harmonic sounds. 

3.1.2. The Pitch Detection Process 

Based on the previous discussion, the essential problem of pitch detection is then to de-
termine the fundamental frequencies present at each time in an audio signal. The analy-
sis conducted in the next paragraphs follows an overview presented in [Gómez et al., 
2003]. 

Much work has already been devoted to this topic, especially in the monophonic 
domain. In fact, pitch detection is an important task in both speech and music content 
analysis. As referred to in Chapter 1, despite some difficulties, e.g., in the processing of 
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the singing voice and handling of octave errors, monophonic pitch detection is usually 
regarded as “practically a solved problem” [Klapuri, 2004, pp. 3], with several reliable 
and real-time algorithms available (e.g., [de Cheveigné and Kawahara, 2002; Doval and 
Rodet, 1991; Noll, 1967]). More recently, several approaches have been devised for poly-
phonic pitch detection in musical signals, e.g., [Klapuri, 2004; Sterian, 1999; Kashino et 
al., 1995].  

Wolfgang Hess [Hess, 1983] (cited in [Gómez et al., 2003]) condensed the pitch de-
tection process into three main sequential stages (Figure 3.2): the pre-processor, the ex-
tractor and the post-processor. This general architecture was proposed in the context of 
monophonic pitch detection, but its main building blocks also apply to polyphonic 
analysis. 

Pre-processor Extractor Post-processor

Audio
Signal

F0
contour

 

Figure 3.2. Overview of the monophonic pitch detection process. 

The objective of the pre-processor is to perform data reduction so as to facilitate the 
F0 extraction procedure. Namely, one of its main tasks is to suppress noise as a means of 
improving pitch detection accuracy. Another goal is to enhance the features that are use-
ful for F0 determination. 

After pre-processing, the extractor - the core pitch detection module - examines the 
obtained signal and looks for the fundamental frequencies in each frame. Different 
strategies for both monophonic and polyphonic pitch detection are described in the next 
subsections. 

Finally, in the post-processor, several tasks such as error detection and correction, 
smoothing, etc., might be carried out. Indeed, the resulting F0 contour is usually noisy. 
Namely, it is often affected by isolated errors, e.g., incorrectly extracted outliers or 
sub/super-harmonics. 

3.1.3. Monophonic Pitch Detection 

The first attempts towards pitch detection in monophonic musical signals brought in 
methods from the speech research community. More recently, new techniques have been 
specifically designed for music. In effect, musical signals have some peculiarities that re-
quire particular attention [Klapuri, 2004, pp. 79]. Namely, the pitch range of musical 
sounds is wider than that of speech signals and the spectral content of the sounds pro-
duced by musical instruments vary significantly. Also, phenomena such as inharmonicity 
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should be taken into account. 

Monophonic pitch detection is usually considered solved, since satisfactory results 
can be achieved in most situations. Nevertheless, strict demands are hard to fulfill in 
some specific problems, e.g., in the processing of the singing voice or in the accurate 
analysis of the attack and decay regions of notes.  

Despite the myriad of different pitch detection algorithms that have been proposed 
since the 1960’s until our days (e.g., [Noll, 1967; Gold and Rabiner, 1969; Lahat et al., 
1987; Slaney and Lyon, 1990; Doval and Rodet, 1991; Maher and Beauchamp, 1993; 
Talkin, 1995; de Cheveigné and Kawahara, 2002; Clarisse et al., 2002]), mostly in the 
speech processing context, no universal monophonic pitch detector has been developed. 
In fact, each of them has its own advantages and limitations: some focus on the problem 
of pitch detection in the singing voice (e.g., [Ryynänen, 2004; Viitaniemi et al., 2003; 
Clarisse et al., 2002; Haus and Pollastri, 2001; McNab et al., 1996a]), others propose 
more robust solutions to the common octave-error problem (e.g., [de Cheveigné and 
Kawahara, 2002]), still others are designed for efficiency in order to cope with real-time 
needs (e.g., [de la Cuadra et al., 2001]), and so forth. 

Among these, pitch detection of the singing voice has proved to be a difficult prob-
lem, even in a monophonic context, mainly as a consequence of the acoustic properties 
of the human voice, which involves both voiced and unvoiced sounds. Vocal sounds can 
be classified as voiced or unvoiced (which can be further divided into fricative and plo-
sive), based on their mode of excitation. Basically, voiced sounds correspond to vowels 
and give rise to periodic waveforms. Therefore, they enclose the performed musical 
pitches and are easier to analyze. On the other hand, unvoiced sounds relate to conso-
nants (except for [m], [n] and [l], which are voiced, [Haus and Pollastri, 2001]). These are 
difficult to analyze because of their noise-like properties. Voiced sounds dominate during 
singing but, even so, unvoiced elements are relevant, since they frequently convey 
rhythmic aspects of the performance.  

The existing approaches can be categorized in different ways. Namely, it is practical 
to cluster them according to the processing domain, where time and frequency-domain 
methods can be defined.  

Anssi Klapuri recommends, however, a different categorization, where algorithms 
are clustered based on the way they handle spectral information. In this organization, 
spectral location, spectral interval and unitary categories are defined [Klapuri, 2004, pp. 23]. 
Briefly, the first class of methods looks for frequency partials at harmonic spectral loca-
tions, the second group considers the spectral intervals between partials and unitary al-
gorithms provide a trade-off between both mechanisms. Representative variants from 
each class are introduced in the following paragraphs, complying with Klapuri’s organiza-
tion. Extensive overviews on monophonic pitch detection can be found, e.g., in [Gómez 
et al., 2003; Gerhard, 2003; de Cheveigné and Kawahara, 2002]. 
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A. Spectral Location Algorithms 

As mentioned, this category encompasses the class of algorithms that look for fre-
quency partials at specific spectral locations, namely strategies based on harmonic pat-
tern matching or wave periodicity analysis methods. In the latter, despite the fact that the 
analysis is conducted in the time-domain, a corresponding spectral representation is 
mathematically implicit, where the locations of frequency partials are used.  

Autocorrelation Function (ACF) 

One of the most commonly used classes of time-domain algorithms is the one 
founded on the autocorrelation function. It consists on checking how similar a signal is 
to itself at each point, i.e., how well it superimposes with itself at different time lags. The 
ACF of a discrete signal x[n] is usually defined as in (3.1): 
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where N denotes the duration of the signal in number of samples and r(τ) is the value of 
the autocorrelation function for a time lag τ. The fundamental frequency is then habitu-
ally determined as the maximum of r(τ) after zero lag (since the ACF has a maximum 
when the signal is compared to itself, i.e., at zero time lag). 

The ACF can be more efficiently computed in the frequency domain via the Fast 
Fourier Transform (FFT) algorithm [Smith, 1997, pp. 225-242], according to (3.2). First, 
the signal is transformed into the frequency domain by the FFT and then the square of 
the magnitude spectrum is obtained and transformed back to the temporal domain. In 
(3.2) |X[k]| denotes the magnitude of the spectrum at the kth frequency bin. 
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In conceptual terms, the ACF as calculated by (3.2) differs from (3.1) in that the 
FFT-based ACF is equivalent to circular autocorrelation [Smith, 1997, pp. 184]. This 
corresponds to always using N values in the summation in (3.1), as a result of feeding in 
the initial values of x after the N-1th sample, i.e., in a circular way. 

The ACF can be looked upon as a mechanism that accentuates frequency partials at 
harmonic locations of the magnitude spectrum. This becomes clearer if we rewrite (3.2) 
as follows, (3.3): 
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Basically, the previous equation says that when τ matches the true sound period the 
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square magnitude spectrum is maximally weighted at the harmonic locations.  

ACF-based pitch detectors are relatively immune to noise, but are sensitive to for-
mants and spectral peculiarities in the sound [Gómez et al., 2003]. In effect, raising the 
magnitude spectrum to the second power emphasizes spectral peaks in relation to noise 
but aggravates the spectral peculiarities of the sound under analysis (e.g., strong formant 
structure, which amplifies the harmonics in some frequency regions).  

Moreover, this class of methods has the drawback of being prone to “twice too low” 
octave errors. In reality, in temporal analysis, the signal is also periodic at multiples of 
the fundamental period. Such integer multiples (and doublings in particular, i.e., half 
the F0) have sometimes higher weights in the ACF producing the referred class of errors.  

Examples of pitch detectors that resort to the ACF include the following: [Medan et 
al., 1991], where the cross-correlation function over the range of feasible pitch values of 
synthetic and real speech data is maximized; [Talkin, 1995], which is based on a two-step 
calculation of the normalized cross-correlation function between successive segments of 
the input signal; or the YIN algorithm [de Cheveigné and Kawahara, 2002], where a 
number of modifications are introduced in order to decrease estimation errors 38 (e.g., 
deal with octave errors, increase pitch accuracy by interpolation) and to reduce the num-
ber of free parameters (e.g., upper frequency limits due to peaks near zero lag). 

Cepstral Analysis 

The cepstral39 pitch detector, proposed by Michael Noll in 1967 [Noll, 1967] (cited 
in [Gómez et al., 2003]) for pitch detection in speech signals has close model level simi-
larities with the ACF. In fact, the cepstrum is computed as the inverse Fourier transform 
of the logarithm of the power spectrum of the signal, as in (3.4):  

[ ] [ ]( )( )1 logc n FFT FFT x n−=  (3.4) 

The idea of taking the logarithm is to separate the source and transfer functions. 
Hence, the pulse sequence originating from the periodicity source reappears in the cep-
strum as a strong peak at the fundamental quefrency.  

By using the logarithm, cepstral analysis has the opposite benefits and limitations of 
ACF: it is reasonably robust for signals with strong formants and spectral peculiarities 
but is inaccurate in the presence of noise. As for “twice too low” octave errors, this ob-
stacle is kept. 

                                                        
38 Actually, one of the modifications was to replace the ACF by the related average magni-

tude-difference function. 
39  Most of the terms related to cepstral analysis are anagrams of frequency-domain terms, for example, 

cepstral instead of spectral, cepstrum instead of spectrum, quefrency instead of frequency, etc. 
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Harmonic Matching Methods 

Harmonic matching algorithms rely on the peaks of the magnitude spectrum for F0 
determination. In a musical context, the identified spectral peaks are compared to the 
predicted harmonics for each F0 candidate, from which a fitting measure is computed. 

In [Maher and Beauchamp, 1993] a fitness measure designated as “Two-Way Mis-
match” is described, where, for each F0 candidate, mismatches between the theoretical 
and the obtained harmonic frequencies are averaged over a fixed subset of the available 
partials. With the purpose of increasing the robustness of the method to noise or to the 
absence of certain partials, a weighting scheme is employed. 

In the same category, Boris Doval and Xavier Rodet [Doval and Rodet, 1991] follow 
a probabilistic approach using a maximum likelihood spectral pattern matching pitch 
detector. The general idea is to look for the F0 that best explains the partials perceived in 
the magnitude spectrum. In this way, Gaussian functions centered on each multiple of a 
hypothesized F0 are used to represent the likelihood of observing the partials given the 
F0 candidate, in a Bayesian manner. This approach recurs to a number of random vari-
ables such as the fundamental frequency, the amplitude envelope, the presence or ab-
sence of specific harmonics, the probability density of specific partials and the number 
and probability of other partials and noise partials. 

B. Spectral Interval Algorithms 

The main shortcoming of spectral location algorithms is their inability to appropri-
ately cope with inharmonic sounds. Indeed, by weighting spectral components according 
to their spectral locations, the sounds produced by real musical instruments are not 
properly dealt with, since the harmonics are not usually found at their exact theoretical 
places. Spectral interval methods are then proposed to overcome this difficulty. 

As the name suggests, spectral interval algorithms are based on measuring the spec-
tral intervals between frequency partials. These algorithms work relatively well for 
non-ideal harmonic sounds, since the intervals between harmonics remain more stable 
than their exact theoretical locations, for example in the spectra of piano sounds. 

Such magnitude spectra can be regarded as being “periodic”, in the sense that har-
monic peaks appear at regular intervals. An obvious and common way of determining 
that period is to compute the ACF of the magnitude spectrum. Examples of algorithms 
derived from spectrum autocorrelation are [Lahat et al., 1987; Kunieda et al., 1996]. 

In terms of octave errors, unlike temporal autocorrelation, which is prone to twice 
too low F0 errors, spectrum autocorrelation frequently leads to F0 doubling errors. In 
fact, the magnitude spectrum is quasi-periodic at multiples of the F0. Thus, such integer 
multiples, and doublings in particular, may receive increased weight in the calculation of 
the ACF, causing the mentioned “twice too high” errors.  
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C. Unitary Model 

A third category of algorithms is based on a trade-off between spectral location and 
spectral interval methods. Here, the underlying principle is to evaluate, not the periodic-
ity of the time-domain waveform or of the magnitude spectrum, but the periodicity of 
the time-domain amplitude envelope.  

Envelope Periodicity 

In effect, signals with more than one frequency component reveal periodic fluctua-
tions in the time-domain amplitude envelope, i.e., show beats. The rate of the observed 
beats is a function of the frequency difference of each pair of frequency components. In 
the case of harmonic signals, such as the ones from musical sounds, an interval corre-
sponding to the fundamental period will dominate and so the F0 will be noticeable in 
the amplitude envelope of the signal.  
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Figure 3.3. Envelope periodicity: a) and b) original time-domain signal and respective 
magnitude spectrum; c) and d) half-wave rectified signal and spectrum; e) 
and f) amplitude envelope and spectrum. 

This is illustrated in Figure 3.3, for a signal composed of the 15th to 19th harmonics 
of a 220 Hz fundamental frequency tone (based in [Klapuri, 2004, pp. 27]). There, the 
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magnitude spectrum (panel b) of the original signal (panel a) contains information on 
the spectral locations of the harmonics of the initial signal. After half-wave rectification 
(panel c), the resulting spectrum encloses also information on the periodicity of the am-
plitude envelope (panel d), which is determined by the intervals in frequency between 
the original partials. Thus, spectral interval information is added to the former spectrum. 
Finally, the amplitude envelope (panel e) is obtained by low-pass filtering the rectified 
signal. The respective spectrum is depicted in panel f. 

Envelope periodicity methods offer an elegant trade-off between spectral location 
and spectral interval information. The trade-off between the two types of information is 
determined by the characteristics of the low-pass filter (dashed line in Figure 3.3d): if the 
cutoff frequency is tuned in order that the initial frequency components are kept, a sub-
sequent periodicity analysis utilizes both spectral location (from the first spectrum) and 
spectrum interval (from the amplitude envelope) information. Typically, the cutoff fre-
quency is set to 1 kHz and a smooth transition band is usually defined so that signal 
components above 1 kHz are increasingly attenuated. 

Auditory Models: Unitary Models 

The spectral location/interval dialectic is present as well in several theories of pitch 
perception. Indeed, some philosophies base the calculation of the fundamental fre-
quency on the locations of partials (attempting to find the fundamental of which they 
are harmonic), whereas others use the beats between them (the fundamental correspond-
ing to the frequency of beating) [Bregman, 1990, pp. 236].  

It is likely that human pitch perception resorts to both spectral locations and spec-
tral intervals. In reality, whereas lower harmonics generally fall into separate critical fre-
quency bands, several higher-frequency harmonics may belong to the same critical 
band40. The latter, designated as unresolved harmonics, interact with each other, producing 
beats in the previously described way. In this way, it is plausible that spectral locations 
are used in the lower parts of the spectrum, whereas, in the higher frequency channels, 
beat registration dominates [Bregman, 1990, pp. 237]. 

Moreover, some controversy also exists as to the procedures behind the detection of 
the frequency components in the input signal. Here, place (or frequency) theories use the 
evidence that different places in the basilar membrane of the inner ear respond maxi-
mally to different frequencies. On the other hand, timing (or periodicity) theories are 
based on the fact that the part of the basilar membrane that responds best to a given 
frequency component tends to vibrate at the frequency of that component as well 
[Bregman, 1990, pp. 235]. The auditory system could then use this information to infer 

                                                        
40  Basically, for now it suffices to say that critical bands are channels for processing. Spectral compo-

nents in different frequency ranges fall into different frequency channels and, thus, are separately 
processed [Hartmann, 1997, pp. 256]. This will further discussed in Section 3.3.1. 
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the spectrum of the input sound. 

Implementations of each of the abovementioned theories yield different kinds of re-
sults and, hence, only explain parts of the problem. However, recent models of human 
pitch perception attempt to unify these competing psychoacoustic theories into one sin-
gle model, able to reproduce a wide range of phenomena in human pitch perception 
(therefore the term “unitary model”). Researchers such as Raymond Meddis and col-
leagues [Meddis and O’Mard, 1997; Meddis and Hewitt, 1991] or Malcolm Slaney and 
Richard Lyon [Slaney and Lyon, 1990; Slaney and Lyon, 1993] have conducted consid-
erable of work towards this goal, based on an early work by Joseph Licklider ([Licklider, 
1951] (cited in [Slaney and Lyon, 1990]). This author was the first to propose correlo-
grams as a framework for pitch perception. 

In the unitary approach, both timing and place information are taken into consid-
eration, through band-wise signal analysis followed by periodicity evaluation in each 
channel. The detected periodicities are then integrated across channels. Both spectral 
locations and intervals are used, since half-wave rectification is performed in each band, 
from which the spectral components of the amplitude envelope are added to the spec-
trum. The rectified signal in each band may (or not) be filtered, according to the desired 
trade-off between spectral location and spectral interval information. 

Another advantage of unitary models is that, by separating the analysis into different 
frequency bands, increased robustness to corrupted signals can be achieved. For exam-
ple, frequency bands with more favorable SNR might provide crucial information for 
pitch detection. 

A focus of some criticism in these approaches concerns the fact that no different 
mechanisms are adopted for resolved and unresolved harmonics, as referred to in 
[Tolonen and Karjalainen, 2000]. Another drawback is that the execution of these mod-
els is usually computationally expensive, even though some of the processes carried out 
in the ear are frequently simplified. Moreover, controversial methods for periodicity cal-
culation are employed, as the exact operations executed in the brain are still the subject 
of some controversy. Nonetheless, it is argued that the outcome reproduces quite faith-
fully the work performed by the human auditory system.  

Further details on the general processing steps of auditory-model-based pitch detec-
tors, and particularly of Slaney and Lyon’s model, will be given in Section 3.3. 

3.1.4. Polyphonic Pitch Detection 

As for polyphonic pitch detection, the goal is to find the F0s of all sounds present in a 
mixture. In this case, many more difficulties are expected. Particularly, as a consequence 
of the presence of several instruments of both pitched and unpitched nature, problems 
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such as peak masking and spectral collisions increase its complexity level, in terms of the 
actual detection of pitches (namely regarding their precise frequencies and intensities). 
Moreover, concurrent sounds whose F0s are related by small integer ratios may cause the 
erroneous detection of nonexistent tones, e.g., the root tone of a chord. Spectral match-
ing of tone models is also more complex, since the different instruments in the mixture 
have distinct and varying spectral properties.  

The described difficulties are illustrated in Figure 3.4, where the magnitude spec-
trum of the saxophone sound depicted in Figure 3.1 is mixed with three other MIDI 
synthesized sounds (namely, piano, flute and violin). The obtained spectrum, depicted in 
panel b), is significantly more complex. The addition of percussion would increase the 
complexity level even more. 
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Figure 3.4. Spectra of an isolated harmonic sound and of a mixture of sounds. 

In general, monophonic pitch detection algorithms are not adequate to polyphonic 
pitch detection tasks. Nevertheless, they can be adapted to simple polyphonic pitch de-
tection problems [Gómez et al., 2003], as well as melody detection in polyphonic con-
texts. A straightforward extension of standard monophonic pitch detectors, such as 
autocorrelation-based ones, consists of selecting more than one peak in each frame, 
along with post-processing for pruning. This is the approach we follow for melody detec-
tion, as will be seen. However, these extensions do not suit well the requirements of full 
music transcription, since they are a source of both ghost and missing notes, making it 
difficult to attain a good balance between over and under-detection. Also, such method-
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ologies are not designed to cope with situations such as spectral overlapping and their 
effects, i.e., spectral collisions and peak masking. 

Thus, dedicated polyphonic-oriented algorithms have been developed, mostly in the 
context of automatic music transcription systems. The devised mechanisms are even 
more diverse than the ones for single-pitch detection, approaching the problem from 
different perspectives, e.g., physiology of hearing, perceptual aspects involved in the lis-
tening process, instrument tone models, musicological principles, etc. A few representa-
tive polyphonic pitch detectors are described in the next paragraphs. More comprehen-
sive overviews can be found in [Klapuri, 2004; Bello, 2003; Hainsworth, 2001]. 

The first attempts towards this goal date back to the 1970s, with the work by James 
Moorer [Moorer, 1977]. His system allowed a maximum of two simultaneous instru-
ments, under heavy constraints: both instruments should be pitched, the dynamics were 
controlled (no glissando neither vibrato permitted), the two parts should not cross and 
simultaneous notes were only admitted as long as their fundamental frequencies and 
harmonics did not overlap. This last restriction is particularly difficult to deal with, since 
most common music intervals are small whole number ratios of each other, e.g., major 
thirds, fifths, octaves, etc. Such a limitation makes the addition of further instruments 
prohibitive. Hence, this initial effort was too restricting and, therefore, unpractical in a 
general framework. 

Moorer’s work was continued during the early and middle eighties by a group of re-
searchers from the Center for Computer Research in Music and Acoustics (CCRMA), 
from Stanford University, e.g., [Chafe et al., 1982; Chafe et al., 1985; Chafe and Jaffe, 
1986], for the transcription of acoustic piano signals. They proposed a set of heuristic 
rules to group peaks at the output of a filterbank (based on the bounded-Q transform). 

Later on, Robert Maher also implemented an algorithm for the transcription of du-
ets [Maher, 1989; Maher, 1990] (cited in [Klapuri, 2004, pp. 69]). There, frame-based 
spectral analysis was conducted, where the two F0s were selected as the pair that mini-
mized the difference between the predicted and observed harmonics. However, in both 
Stanford and Maher’s strategies, the polyphony was confined to two voices with no cross-
ing of the F0s in each voice. 

As part of the “Kansei” music system (which attempted to mimic the human re-
sponse to music), Haruhiro Katayose and Seiji Inokuchi [Katayose and Inokuchi, 1989] 
built up a transcriber for guitar, piano and shamisen (a traditional Japanese instrument). 
There, peak extraction was carried out in the frequency domain and a number of heuris-
tic rules were suggested to group the obtained peaks into notes. The transcriber was 
tested on polyphonies with more than two notes but the performance was poor in this 
case. 

In 1993, Michael Hawley conformed to a different methodology to the transcription 
of polyphonic piano performances [Hawley, 1993]. His system was more flexible than 
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Christofer Chafe et al.’s, as more than two notes could be present simultaneously. It was 
based on a differential spectrum analysis, similar to taking the difference of two adjacent 
frames in an STFT. Note onsets were also looked for in the high-frequency region. The 
method was reported to being reasonably successful (although this is not clear, since no 
detailed tests are provided), demonstrating the viability of polyphonic transcription for a 
specific instrument such as piano. In reality, narrowing the focus of analysis to one par-
ticular instrument with well-known characteristics permits the relaxation of other con-
straints, leading to better accuracy. Nevertheless, good results are only attained with the 
specific instrument used, and so this solution still lacks generality.  

Earlier automatic music transcription approaches were very limited in regard to the 
number of simultaneous allowed sounds, the defined pitch range and the relationships 
between concurrent sounds. Only in recent times, systems became reasonably accurate in 
higher polyphonies, without restricting the analysis to one single well-modeled instru-
ment. Even so, a general-purpose, robust and reliable method of automatic transcription 
of polyphonic music is yet to be devised. Indeed, the performance of “modern” poly-
phonic pitch detection algorithms decreases progressively as the number of voices in-
creases. In addition, the performance decreases substantially in the presence of noise.  

Kunio Kashino and colleagues [Kashino et al., 1995] created a system where sinusoi-
dal tracks41 were extracted from the input signal and clustered into note hypotheses, re-
sorting to the implementation of some of the perceptual cues of sound organization de-
scribed in Section 2.2, namely harmonicity and onset timing. Moreover, attempts to-
wards the identification of the source of each note were conducted recurring to timbre 
models. Here, coinciding frequency components were resolved via pre-stored tone 
memories. In terms of musical knowledge, chord note relations and statistics of chord 
transitions were employed. The integration of top-down and bottom-up information was 
accomplished with recourse to a Bayesian probability network, conceptually based on a 
blackboard model (see next paragraph). The evaluation set consisted of random mixtures 
of samples from five different instruments, forming polyphonies with up to three simul-
taneous voices. 

Keith Martin [Martin, 1996] also suggested a strategy founded on blackboard 
frameworks. The blackboard system is composed of a global database (where hypotheses 
are proposed and developed), a scheduler (that monitors and controls the interactivity 
within the system), and knowledge sources (corresponding to experts). The blackboard 
made use of knowledge about principles from physical sound production, rules govern-
ing tonal music and “garbage collection” heuristics. Namely, the probabilities of occur-
rence of different notes (either concurrent or sequentially) can be estimated based on 

                                                        
41  Basically, sinusoidal tracks are formed by peak detection in each frame, followed by peak continua-

tion, which connects peak candidates with similar frequency values in consecutive frames. This is 
further developed in Chapter 4.  
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databases of written music. Additionally, F0s in particular intervallic relations were fa-
vored by the used musical rules. This system employs an auditory model, where a log-lag 
correlogram was used as a mid-level representation. One drawback of Martin’s approach 
is that it was simulated using only a short musical excerpt, specifically, a piano perform-
ance of a four-voice Bach chorale. Similarly, Juan Bello also recurred to the blackboard 
framework in the analysis of simple polyphonic music [Bello, 2003]. There, piano pieces 
by well-known composers were used for evaluation. 

Another work that makes extensive use of perceptual grouping principles is the one 
developed by Andrew Sterian [Sterian, 1999]. There, sinusoidal tracks are utilized as 
mid-level representation. Perceptual grouping rules are then represented as a set of like-
lihood functions that evaluate the probability of the observed partials given a hypothe-
sized grouping. The defined likelihood functions take into account cues such as har-
monicity, onset and ending timings, partial density, among others. A multiple-hypothesis 
tracking method is then used to find a solution (sub-optimal in this case) for the best 
grouping. The system was evaluated in a small test set with up to four simultaneous 
sounds and the authors report a note recognition index for the recorded song excerpts of 
around 0.5 (computed as a function of the percentage of true notes captured and false 
positives). 

Luís Martins used as well sinusoidal tracks as mid-level representation, with a slight 
yet important variation [Martins, 2001]: instead of performing peak continuation on the 
total set of peaks in each frame, harmonic structures are first identified according to the 
harmonic relations between peaks; then, peak continuation is conducted on the detected 
harmonic structures. The constructed trajectories are accepted or rejected based on a 
clustering and pruning algorithm, which, among other tasks, attempts to eliminate ghost 
trajectories that result from harmonic relationships. The system was tested on MIDI syn-
thesized sounds with polyphonies of up to three simultaneous notes with reasonable suc-
cess. More difficulties were encountered while transcribing a recording of a piano piece. 

Alain de Cheveigné and Hideki Kawahara [de Cheveigné and Kawahara, 1999] ex-
tended the auditory-model-based pitch detector proposed by Raymond Meddis and Mi-
chael Hewitt [Meddis and Hewitt, 1991] to the multi-pitch case, where an iterative can-
cellation-detection scheme was suggested. First, a pitch is detected and the corresponding 
sound is cancelled. Pitch detection is then repeated for the residual sound until all 
pitches are determined. Sound cancellation is carried out either by channel selection or 
by means of within channel cancellation filtering. Despite the fact that the dataset 
adopted for evaluation was quite artificial (e.g., a maximum of three concurrent perfectly 
periodic signals, with a pitch range less than an octave), the iterative methodology ap-
pears to work successfully.  

Meddis and Hewitt’s model also inspired the multiple-pitch detector designed by 
Tero Tolonen and Matti Karjalainen [Tolonen and Karjalainen, 2000]. The central idea 
of the authors was to devise a computationally efficient version of the initial algorithm, 

 



78 Chapter 3.   Pitch Detection  

adapted to polyphonic pitch detection. To this end, only two frequency bands are used 
instead of the original 40 to 120 channels. Spectral flattening is performed by inverse 
warped-linear-prediction filtering and the trade-off between robustness to noise and to 
spectral peculiarities is addressed by applying of a generalized ACF function. The sum-
mary autocorrelation function is then enhanced so that spurious peaks are discarded. 
However, although several of such peaks are disposed of, both false positives and false 
negatives occur. The algorithm was tested with noisy and clean musical chords, as well as 
mixed speech signals, showing reasonable accuracy. 

Band-wise processing was also conducted by Anssi Klapuri [Klapuri, 2003]. Nonethe-
less, this method is less computer-intensive, given that only a single STFT per frame is 
needed, after which local regions of the spectrum are separately processed. Namely, 18 
logarithmically distributed bands from 50 Hz to 6 kHz are used, each spanning a 
2/3-octave wide region of the spectrum that is weighted with a triangular frequency re-
sponse. Then, a fundamental frequency likelihood vector is calculated at each band. 
These likelihoods are combined to yield a global pitch likelihood, in a manner capable of 
handling inharmonicities. An iterative estimation and cancellation procedure is then 
implemented. First, the most likely pitch is selected as the predominant pitch and its 
partials are subtracted from the mixture (based on the spectral smoothness principle). 
Then, pitch detection and sound cancellation are applied iteratively to the residual. Fur-
thermore, the method encloses mechanisms for noise suppression inspired on RASTA 
processing and for the estimation of the number of concurrent sounds in the signal. The 
system was tested on mixtures of notes (one up to six), and proved, for this particular set, 
to be able to resolve at least the most prominent pitches in the mixture. Moreover, the 
author reports results that surpass the average of ten trained musicians in musical chord 
identification tasks.  

Klapuri also proposed an auditory-model-based system for multiple-pitch detection 
[Klapuri, 2005], which was then employed by himself and Ryynänen in a polyphonic 
pitch detector [Ryynänen and Klapuri, 2005a]. This system is a super-set of the one cre-
ated by the same authors for melody detection [Ryynänen and Klapuri, 2005b], and de-
scribed in Section 2.4.2. As referred to before, a note event HMM, a silence model and a 
musicological model are utilized for polyphonic transcription. However, instead of select-
ing only the optimal path through the network formed by note event and silence models, 
several paths are looked for. Namely, after finding the optimal path via the To-
ken-passing algorithm, the used note models are removed, the observation likelihoods 
for the silence model are recalculated and the next best path is looked for. This is re-
peated for a pre-defined number of paths until the found paths contain no more notes. 

Although the recent approaches are more general and flexible than Moorer's early 
system, a robust and reliable method of automatic transcription of polyphonic music is 
yet to be conceived. In reality, for practical purposes, automatic transcription in an arbi-
trary context is still far from being solved. This is demonstrated by the attempted efforts 
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towards the development of commercial products. Such systems aim to convert poly-
phonic music recordings to the MIDI format but, despite their usefulness for simple 
polyphonic music, results are still insufficient for “real-world” music. 

3.2. Pre-Processing: RASTA Processing 

As discussed in Section 3.1.2, the objective of the pre-processor is to perform data reduc-
tion so as to facilitate F0 extraction. In this way, noise suppression and enhancement of 
features useful for F0 determination are important tasks in this respect. The problem of 
acoustic noise suppression was studied mainly in the speech-processing domain (see 
[Hess, 1983; Klapuri, 2004, pp. 80] for a review of such techniques). 

Basically, the sound generated by physical vibrators is first filtered by the resonance 
structures (e.g., body of a guitar, characteristics of the human vocal tract) and by the en-
vironment (reflections in walls, etc.) and then linearly superimposed with other simulta-
neous sounds and noise. The first type is named convolutive noise and the second one is 
additive noise. The underlying F0 is best revealed if both are removed. 

The suppression of convolutive noise is usually denominated spectral whitening (or 
flattening), since it aims to normalize the spectrum peculiarities of the sound source and 
the environment, i.e., removing “color” from the spectrum, but leaving the spectral fine 
structure intact. A common way to accomplish it is by inverse linear predictive filtering. 
Namely, in the music context, Tolonen and Ellis carry out spectral whitening, respec-
tively by inverse filtering with warped linear-prediction [Tolonen and Karjalainen, 2000] 
and by normalizing the powers of the outputs of a band-pass filterbank [Ellis, 1996, pp. 
77]. In our work, we employ an auditory model, whose signal compression is often re-
garded as similar to spectral whitening, as will be seen in Section 3.3.1. 

As for additive noise, when analyzing speech sounds it is normally assumed that 
background noise characteristics are slowly-varying in comparison to the target speech 
signal. Hence, a typical way of removing it consists of first estimating the noise spectrum 
over a longer period of time and then subtracting the noise component from the mix-
ture. 

However, the concept of additive noise is different in music. Here, such “noise” 
comes from the presence of percussive instruments (particularly drums), which are short 
in duration and transient in nature, unlike the slowly-varying continuous noise usually 
assumed in speech. In fact, continuous noise is not typical of musical signals and, thus, 
its estimation over a long window is not adequate. In our work, we consider everything 
that is not part of the melody, i.e., all sorts of accompaniments, either pitched or un-
pitched, as additive noise. Particularly, percussive components should be suppressed 
since they lead to low SNR and are consequently a major source of peak masking (al-
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though it is very difficult to achieve it in practice). Therefore, the notion of additive 
noise is entirely different in speech and music, and so its suppression should obey to 
different criteria. 

In this way, specific pre-processing mechanisms for music are necessary. Neverthe-
less, we are not aware of many relevant studies under this topic. One notable exception 
is the strategy pursued by Klapuri [Klapuri, 2003], based on the principles of RASTA 
(i.e., RelAtive SpecTrAl) processing [Hermansky et al., 1993].  

The idea of the algorithm is to remove both convolutive and additive noise simulta-
neously and this is conducted in each analysis frame due to the transient nature of per-
cussive sounds. Hence, the method relies on a signal model for harmonic sounds con-
taining both kinds of noise, according to (3.5): 

[ ] [ ] [ ] [ ] [ ] [ ]HX k S k H k N k X k N k= ⋅ + = +  (3.5) 

In the previous expression, X[k] is the observed power spectrum of a discrete input 
signal and N[k] is the power spectrum of unknown additive noise, here represented by all 
non-harmonic components. This model assumes that the additive noise and the signal 
are uncorrelated. Furthermore, N[k] cannot be assumed stationary. 

Still in (3.5), S[k] denotes the power spectrum of the vibrating system whose funda-
mental frequency should be measured (for example, a guitar string). This spectrum is 
filtered by H[k], which represents the frequency response of the body of the musical in-
strument, the operating environment and other convolutive noise, as denoted by XH[k].  

Convolutive noise is eliminated by magnitude warping the power spectrum of the 
signal, which equalizes XH[k] and allows the linear subtraction of the additive noise from 
the result. This is accomplished following the lines of RASTA processing, as in (3.6): 

[ ] [ ]1
ln 1Y k X k

g
 

= + 
 

 (3.6) 

There, g is a scaling factor that is adaptively calculated in each analysis frame, acting 
to scale the level of the additive noise floor to a value close to unity. Moreover, it is as-
sumed that the amplitudes of the important frequency partials are well above the addi-
tive noise floor and that the majority of frequency components come from noise, rather 
than from the spectral peaks.  

The performed logarithmic operation has some interesting effects. Indeed, given 
that the additive noise is low after scaling, it goes through a linear-like transform and 
remains additive. On the other hand, in conformity with the assumption that important 
frequency partials are clearly above the additive noise floor, the spectral peaks go through 
a logarithmic-like transform. Thus, the spectrum is flattened and so spectral peculiarities 
are attenuated much in the same way as in cepstral processing (as a consequence of the 
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logarithmic operation).  

Developing (3.6) a bit more, it turns out (3.7), where, M[k] denotes the magni-
tude-warped additive noise. 

[ ] [ ] [ ]1
ln 1 HY k M k X k

g
 

≈ + + 
 

 (3.7) 

The author has found that an optimal value of g depends on the level of both the 
additive noise and the spectral peaks. After experimenting with different models, Klapuri 
concluded that the best performance was achieved by averaging the power spectrum in 
the frequency range of interest via the cubic root, as in (3.8). There, indices k0 and k1 are 
determined based on the employed frequency range, corresponding, respectively to fre-
quencies of 50 Hz and 6.0 kHz.  
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The additive noise component, M[k] in (3.7), is then suppressed by applying a spe-
cific spectral subtraction on Y[k]. The noise is first estimated by computing a moving 
average  over Y[k] on a logarithmic frequency scale. The idea is that local average 
values of the spectrum represent the additive noise floor. Therefore, filtering the spec-
trum is this fashion should result in an estimate of the noise floor. More specifically, the 
magnitude of M[k] for k = k

ˆ [ ]M k

i is obtained by calculating a Hamming window weighted 
average over the values of Y[k] around ki. The width, W, of the Hamming window de-
pends on the center frequency f corresponding to ki, according to (3.9): 

( ) 24.7 4.37 1
1000

f
W f β  = ⋅ ⋅ + 

 
 (3.9) 

In the previous expression, the width of the window is β = 4.8  times the width of an 
Equivalent-Rectangular Bandwidth critical-band (see [Hartmann, 1997, pp. 245-246]).  

The estimated noise spectrum, is then linearly subtracted from the magni-
tude-warped power spectrum, Y[k], where negative values are set to zero, as in (3.10): 

ˆ [ ],M k

[ ] [ ] [ ]( ) [ ]1ˆmax 0, max 0, ln 1 HZ k Y k M k X k
g

  
= − ≈ +  

  
  (3.10) 

The executed procedures are illustrated in Figure 3.5, for an excerpt with two har-
monic sounds and a snare drum. Panel a) shows the scaled power spectrum of the signal, 
panel b) depicts the warped-magnitude spectrum and the bottom panel represents the 
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spectrum after the subtraction of additive noise. As desired, after scaling, the noise floor 
is close to unity value and the spectral peaks are clearly above that value (top panel). 

 

10 100 200 500 1000 5000
10

-2
100
10

2
10

4

Frequency (Hz)

P
ow

er

a) Scaled Power Spectrum

10 100 200 500 1.000 2.000 5.000
0

5

10

Frequency (Hz)

P
ow

er

b) Warped Magnitude

10 100 200 500 1000 2000 5000
0

5

10

Frequency (Hz)

P
ow

er

c) Warped Magnitude after Additive Noise Subtraction

 

Figure 3.5. Additive noise suppression by spectral subtraction. 

Finally, in case pitch detection is conducted on the spectral domain, the enhanced 
spectrum, Z[k] in (3.10), is directly used. On the other hand, if pitch detection is per-
formed in the temporal domain, the spectrum must be transformed back to the time 
domain. In this way, the obtained power spectrum is inverted to the time domain by the 
inverse Fourier transform. The phase of the original spectrum is employed in the inver-
sion, after a clarification provided by the author in an e-mail. The resulting filtered frame 
data is then used for pitch detection as described in the next section. This is illustrated 
in Figure 3.6, for the same example. 

There, we can see that the intensity level corresponding to the moment where the 
drum is hit (at around 200-300 msec) is considerably attenuated. We resynthesized the 
filtered signal, which confirmed the almost total removal of the drum. However, the 
output signal sounded somewhat “blurred”. Resorting to visual image analysis, we could 
say that the sound lost contrast. 
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Figure 3.6. Filtered temporal signal. 

3.3. Extraction: Auditory-Model-based Pitch Detector 

Regarding pitch detection, the first impression we could possibly have is that, since we 
are only interested in the melodic line in an ensemble, and given our assumption that 
melody is usually dominant in the mixture, we could regard our problem as a single-pitch 
detection task in a “noisy” environment.  

However, in practical situations melodic pitches are not always the most intense or 
the most likely ones. In reality, it is frequent that F0s corresponding to the periodicities 
of simultaneous notes may compete with each other and be alternately selected as the 
“best” pitch. Therefore, selecting several pitch candidates would make it possible to re-
cover from situations where the F0 of the melody is not selected. In short, the idea of 
finding several peaks is motivated by the fact that missing notes cannot be recovered af-
terwards but, instead, false candidates can be eliminated in later stages. 

Furthermore, we propose that in our work it is not essential to acquire the whole set 
of F0s within each frame, but rather the ones that are more likely to bear melodic infor-
mation. In effect, detecting all the pitches present would give rise to irrelevant informa-
tion in the context of melody detection. Also, the higher the number of notes we come 
up with, the more difficult it will be to select the ones that convey the main melodic line. 

Putting the focus on the melody regardless of the other sources present, we follow a 
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melody-oriented multiple-pitch detection approach, whose basic idea is to capture only the 
most significant F0s in the context of melody detection, which we assume to be the most 
intense ones. Thus, despite the fact that monophonic pitch detectors are not adequate to 
polyphonic pitch detection tasks in general, we hypothesize that adapted single-pitch 
methods could suit well our needs in terms of melodic pitch detection accuracy, besides 
being conceptually simpler than polyphonic pitch detectors designed for full music tran-
scription.  

Namely, we decided to employ an Auditory-Model-based Pitch Detector (AMPD), 
given its improved performance compared to other evaluated pitch detectors42 and the 
described benefits of the so-called unitary model. Additionally, despite the simple perio-
dicity detection scheme carried out in our work, these models can be adapted to poly-
phonic pitch detection, e.g., by iterative estimation and cancellation schemes [Klapuri, 
2005; Klapuri, 2004; de Cheveigné and Kawahara, 1999]. Moreover, we thought it ad-
vantageous to experiment with an auditory model, given the wide consensus about many 
of the processing mechanisms that occur in the physiological and more peripheral parts 
of the human auditory system. Hence, such a frequency analyzer would be expected to 
behave reasonably well. Indeed, this algorithm proved to work better than the other 
evaluated strategies, as will be seen in Section 3.6. However, one important drawback of 
this approach is that it is computationally expensive. 

The AMPD, sketched in Figure 3.7, is based on Slaney and Lyon’s auditory model 
[Slaney and Lyon, 1993]. It receives as input a raw musical signal (monaural, any sam-
pling frequency, fs, though only 22050 and 44100 Hz were used, and 16 bits quantiza-
tion) and outputs a set of pitch candidates and their respective saliences.  

Our goal is to collect pitch candidates at each time instant. Since we cannot define 
instantaneous time in a computational model, we have to use some sort of time granular-
ity. Therefore, we select a small enough time window and conduct sound wave analysis 
in a frame-based manner. Here, we specify a 46.44 msec frame length and a hop size of 
5.8 msec43. This window size constitutes a good trade-off between time and frequency 
resolution: it is small enough for the assumption of signal stationarity and large enough 
for accurate detection of pitches above 43.1 Hz (since each frame contains at least two 
periods of a sound wave with fundamental period equal to 23.22 msec). The defined hop 
size allows for a smooth transition between frames. 

After dividing the musical signal into frames, we implement an auditory-model-based 
analysis of each frame, in order to detect the most salient pitches in each. This analysis 

                                                        
42  The evaluated pitch detectors are described in  Namely, we compared different kinds of 

approaches, based on spectral, autocorrelation, spectral autocorrelation and probabilistic analyses. 
43  These values were suggested during the ISMIR’2004 Melody Extraction Contest, leading to a win-

dow length of 2048 samples and a hop size of 256 samples (assuming fs = 44.1 kHz). The window 
length was intentionally set to a power of 2 for FFT efficiency. 

 Appendix A.
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comprises four stages, diagrammed in Figure 3.7:  

i) conversion of the sound waveform into auditory nerve responses for each fre-
quency channel (defined in Section 3.3.1), using a model of the ear with par-
ticular emphasis on the cochlea, resulting a so-called cochleagram;  

ii) analysis of the periodicities in each frequency channel using autocorrelation, 
from which a correlogram is obtained;  

iii) determination of the global periodicities in the sound waveform by calculation 
of a summary correlogram, or summary ACF (SACF);  

iv) detection of the pitch candidates in the frame by looking for the most salient 
peaks in the SACF.  
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Figure 3.7. Auditory-model based pitch detector (AMPD).  

 

The first two stages correspond to the original algorithm. As for periodicity summa-
rization, unlike the original method, we do not normalize the accomplished SACF (dis-
cussed in the next subsection). Regarding salient peak detection, our procedure is also 
different, since several pitch candidates are identified instead of only the highest one. 

3.3.1. Ear Model 

In the first phase of the multi-pitch detection system, a model of the ear is implemented, 
which aims to mimic the tasks conducted by the outer, middle and, particularly, the in-
ner ear in the first stages of auditory processing.  

Before describing the adopted model, the general functioning of the cochlea and the 
competing theories of pitch perception and their consequences for the proposed repre-
sentation are briefly presented. 
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A. The Cochlea 

In the inner ear, the cochlea encodes information in the sound wave into a 
multi-channel representation of auditory nerve firing patterns. The output of the co-
chlear model is a two-dimensional representation of a sound waveform that allows its 
visualization as a time-frequency image. In this image, termed cochleagram, each line con-
tains information about the auditory nerve responses for the corresponding cochlear (or 
frequency) channel (see Figure 3.13, on page 93). A cochleagram is then a measure of the 
way the frequency content of the signal changes over time, much in the same way as a 
conventional spectrogram is, despite several conceptual and practical differences. A good 
review of the tasks carried out in the cochlea and auditory nerve can be found in 
[Handel, 1989; Hartmann, 1997].  

In short, the cochlea is a coiled, fluid-filled organ of the inner ear that is responsible 
for the transformation of the middle ear fluid vibration into neural firings [Handel, 
1989, pp. 468]. Two elastic membranes divide it: the Reissner’s membrane and the basi-
lar membrane. It is the movement of the basilar membrane that is relevant for the gen-
eration of neural impulses. In effect, on top of the basilar membrane lies the organ of 
Corti, which contains the sensory cells, denominated hair cells. Due to the coiled-shape 
of the cochlea, some cells are located along the inside curve whereas others are located 
along the outside curve. The former are named inner hair cells and the latter, outer hair 
cells. As the air vibration reaches the inner ear (through the vibrations of the oval win-
dow), it creates a pressure wave in the fluid that fills the cochlea, which in turn distorts 
the basilar membrane. This distortion bends the hair cells, inducing their firing. Since 
these receptor cells converge to fibers in the auditory nerve, this causes the firing of neu-
rons running towards the brain cortex. The are many more outer cells (about 12000) 
than inner cells (roughly 3500), but, curiously, 90 to 95% of the fibers of the auditory 
nerve are connected to the inner hair cells. Consequently, these are the most important 
ones to consider, as far as the modeling of nerve firing patterns is concerned.  

One important property of the basilar membrane is that it is stiffer near the oval 
window (i.e., the base) and becomes more flexible towards the opposite end (i.e., the 
apex). Hence, it resonates close to the base for high frequencies, where it is stiff, and 
close to the apex for low frequencies, where it is more flexible, as illustrated in Figure 
3.8. Thus, the basilar membrane acts as a frequency analyzer, since different points along 
it undergo maximum displacement as a function of frequency. Furthermore, a given fre-
quency displaces obviously more than a single point along the basilar membrane. The 
displacement envelope is asymmetrical, being steepest towards the apex [Handel, 1989, 
pp. 476]. Therefore, for a given stimulation frequency, the amount of displacement leads 
to different excitation of the hair cells, according to their place, being maximum for the 
cells that match the stimulation frequency and spreading in the direction of the base.  

This explanation for the behavior of the basilar membrane is called place theory, as 
mentioned in Section 3.1.3. It proposes a tonotopic organization of the auditory system, 
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i.e., an organization where different frequencies excite different hair cells [Hartmann, 
1997, pp. 6].  

 

Figure 3.8. Frequency sensitiveness along the basilar membrane44.  

The place theory says basically that the excitation of each hair cell depends on its 
transfer function. Each cell has a best frequency for which a maximum firing rate occurs, 
responding to other frequencies in its vicinity with a lower rate of firing. In other words, 
each cell acts as a band-pass filter. Due to the asymmetry of the displacement envelope, 
the filters are asymmetrical too, with high-frequency slopes steeper than the lower ones 
[Hartmann, 1997, pp. 248]. Furthermore, the stiffness of the basilar membrane decreases 
nearly exponentially towards the apex. In this way, filter’s center frequencies roughly 
follow a logarithmic scale. This description is illustrated in Figure 3.10 (page 91) for the 
cochlear (or auditory) filterbank described in [Slaney and Lyon, 1990]. 

Another common psychoacoustic explanation of the behavior of the basilar mem-
brane is given by the timing theory (Section 3.1.3). This theory exploits the fact that the 
part of the basilar membrane that responds best to a given frequency component also 
tends to vibrate at the frequency of that component [Bregman, 1990, pp. 235]. Each 
movement originates a neural firing and, consequently, the frequency is coded directly 

                                                        
44  Extracted from http://www.ai.rug.nl/~tjeerd/CPSP/docs/cochleaModel.html. 
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by the firing rate, e.g., a 400 Hz tone causes to hair cells firing at 400 times per second 
[Handel, 1989, pp. 472]. The auditory system could then use this information to infer 
the spectrum of the input sound. However, above 5 kHz neurons do not maintain their 
synchrony with the stimulus, which suggests the existence of other forms of representa-
tion for this situation. 

Despite some competition between these two theoretic branches, it is more probable 
that a combination of the two is actually carried out. Indeed, the timing theory seems to 
dominate at frequencies up to 4 or 5 kHz, whereas higher frequencies are probably han-
dled according to the place theory [Hartmann, 1997, pp. 294]. More information on 
these two hypotheses can be found in [Bregman, 1990; Handel, 1989; Hartmann, 1997]. 

B. Lyon’s Ear Model 
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Figure 3.9. Lyon’s ear model. 

We use the ear model devised by Richard Lyon [Lyon, 1982] and programmed by 
Malcolm Slaney [Slaney, 1988; Slaney, 1998]. We give a short description of Lyon’s 
model in the paragraphs below. For a more comprehensive analysis, we refer the reader 
to [Slaney, 1988; Slaney and Lyon, 1993]. Apart from this model, an extensive review of 
approaches for auditory modeling can be found in [Perdigão, 1997] (in Portuguese). 

The model performs three main tasks: filtering, detection and compression, depicted 
in Figure 3.9 (adapted from [Slaney and Lyon, 1990]).  

Filtering 

First, the outer and middle ears add a slight high pass response to the system. These 
are modeled with a second order high-pass filter with a cutoff frequency of 300 Hz and 
unity gain at a quarter the Nyquist frequency, fN. Further details can be obtained in 
[Slaney, 1988, pp. 22-25]. 
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As for the cochlear filters, these model sound propagation down the basilar mem-
brane, which behaves as a frequency analyzer. In this way, each filter corresponds to a 
cochlear channel that best responds to a particular frequency range.  

The cochlear model described in [Lyon, 1982] combines a series of notch filters, 
which model the traveling pressure waves, with resonators, which model the conversion 
of pressure waves into basilar membrane motion or velocity [Slaney, 1988, pp. 8]. At 
each point in the cochlea, the acoustic wave is filtered by a notch filter. Each of these 
operates at successively lower frequencies in order that the net effect is to low pass the 
pressure wave. Basically, sound travels down the line of notch filters, being filtered at 
lower and lower frequencies. At the same time, resonators pick out a small range of the 
traveling energy and model the conversion into basilar membrane motion. It is this mo-
tion that is detected by the inner hair cells. 

In the latest implementation of the model, the notch and resonator in each stage are 
combined. Hence, the poles in the resulting filter are set to the resonant frequency, so as 
to give a slight peak in the filter’s response at that frequency, given the specified Q, 
whereas the zeros are placed slightly above to provide the band rejection. 

The bandwidth of each filter is a function of its center frequency. At high frequen-
cies the bandwidth, bw, is approximately equal to the center frequency, cf, divided by the 
filter’s quality factor, i.e., filter Q, whereas at lower frequencies the bandwidth is nearly 
constant, i.e., a break frequency, bf, divided by Q [Slaney, 1988, pp. 11]. Formally, it 
comes (3.11): 
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In the previous expression, k denotes the indices of the frequency channel, in a total 
of N, the ear break frequency, bf, is assigned a value of 1000 Hz and a Q factor of 8 is 
specified (suggested and kept default model parameters). The bandwidth calculated as 
described corresponds roughly to a critical band. 

Each of these filters is overlapped by a fraction of the bandwidth, where an ear step 
factor, sf, equal to 0.25 is recommended by the authors. The top frequency, cftop, slightly 
below the Nyquist frequency, fN, is the reference from which the other center frequencies 
are defined. Formally, it turns out (3.12): 
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In the previous expression, the use of channel index 1 comes from the fact that 
lower channels relate to higher frequencies, as these resonate close to the base. As for the 
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ear zero offset (zo) parameter, this is described below (see Equation (3.15)). 

In order to determine the center frequencies for all channels, the number of chan-
nels must be calculated. This is accomplished by finding the place, flow, where the cascade 
pole Q is below 0.5. The number of channels, N, is then obtained as follows, (3.13): 
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 (3.13) 

Starting from the top center frequency, we step down in frequency by sf (step factor) 
times the bandwidth of the filter at the previous frequency, (3.14). Thus, center frequen-
cies decrease exponentially from the base (index 1) towards the apex (index N), in accor-
dance with the human ear physiology. 

[ ] [ ] [ ]= − − ⋅ − =1 1 , 2,3cf k cf k sf bw k k N, ,  (3.14) 

As mentioned before, this model combines a series of notch and resonator filters. In 
the resulting second-order BPF, the poles are set to the center frequency and the zeros 
are positioned slightly above. This is summarized in (3.15): 
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 (3.15) 

There, the zero offset parameter, zo = 1.5, represents how far apart the zero is from 
the center frequency of the filter, i.e., the pole, and ear sharpness, sh = 5, denotes how 
much sharper the notch (zero) should be compared to the resonator (pole) [Slaney, 1988, 
pp. 12]. The defined zeros and poles are then used to design the desired second-order 
filters. 

In our implementation, 118 and 96 cochlear filters result for sampling frequencies 
of 44100 and 22050 Hz, respectively. Figure 3.10 depicts the cascaded response for every 
5th notch-resonator filter, using a logarithmic frequency axis (fs = 22050 Hz)). This figure 
was created using Slaney’s Auditory Toolbox, in whose source code we based our AMPD 
[Slaney, 1998].  
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Figure 3.10. Frequency response of cochlear filters. 

Detection 

After filtering, the movements of the basilar membrane are converted into auditory 
nerve responses by the inner hair cells and the neurons of the auditory nerve. Since the 
inner hair cells only respond to movements in one direction, an array of half-wave recti-
fiers is employed to model the detection non-linearity of the hair cells, ensuring a 
non-negative output that can be used to represent neural response. This is a simple 
model of detection that, namely, does not account for saturation effects that occur when 
the motion is too large. Other more realistic models make use of soft-saturating half-wave 
rectification, local adaptation, refractory times and controlled firing rates, as referred to 
in [Slaney and Lyon, 1993]. 

Compression 

Finally, four stages of multiplicative automatic gain control (AGC) compress the dy-
namic range of the input into a limited level that the auditory nerve can deal with. The 
automatic gain control is, in reality, a model of ear’s adaptation: the response to a con-
stant stimulus is first large and then, as the auditory system adapts to the stimulus, the 
response becomes smaller. Such adaptation is implemented as a variable gain, which at-
tempts to keep the output of the AGC in each stage from exceeding a fixed level. To a 
certain extent, this normalization of hair cell activity is functionally similar to spectral 
flattening [Tolonen and Karjalainen, 2000].  

To simulate adaptation, the AGC first operates at a point where it is sensitive to new 
sounds. After a loud sound is detected, the gain is turned down. The conducted proce-
dures are sketched in Figure 3.11 (adapted from [Slaney and Lyon, 1993]). 

There, z-1 denotes unit delay and the loop with feedback gain (1 - ε) / 3 represents a 
simple low-pass filter with a time constant defined in the ε parameter. There, the divi-
sion by three takes the average output from the input, left and right channels. The target 
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parameter, T, is used to scale the input to the loop filter. Four AGC stages like the ones 
in Figure 3.11 are combined to model the range of adaptation rates present in the audi-
tory system. In each stage, target values of 0.0032, 0.0016, 0.0008 and 0.0004 and time 
constants of 640, 160, 40 and 10 msec are respectively used. Figure 3.12 illustrates the 
output after four stages of AGC (solid line) for a constant input of 0.008 (dashed line). 
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Figure 3.11. Automatic gain control. 
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Figure 3.12. Output after four stages of AGC. 

To sum up the ear model step, Figure 3.13 presents the resulting cochleagram for a 
monophonic saxophone riff (sampled at 22050 Hz) after filtering, detection and com-
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pression. This simple example was chosen for ease of illustration.  
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Figure 3.13. Cochleagram of a 2.5s’ saxophone riff. 

There, the harmonics of the sound waveform are clearly visible by the horizontal 
striations. Recall that higher channels correspond to lower frequencies. This picture has 
a limited time resolution for displaying purposes. However, the inner hair cells in the 
cochlea are extremely sensitive to the time structure of each component of the sound. 
Thus, a view of the cochleagram for a 46.44-msec time slice is presented in Figure 3.14b 
(on page 97). In that figure, the harmonics are not so obvious but a more precise image 
of auditory nerve firing responses in each channel is obtained. 

As previously mentioned, cochleagrams are extremely similar to conventional spec-
trograms, despite their conceptual differences. In reality, both are functions of time and 
frequency, where pixel intensity relates to the intensity of a particular frequency compo-
nent at a certain time instant. Nevertheless, the frequency axis is logarithmic in the coch-
leagram, as a consequence of the nearly logarithmic spacing of the center frequencies of 
the hair cells along the basilar membrane, while it is linear in the spectrogram. Further-
more, some onset enhancement is usually observed in cochleagrams [Slaney and Lyon, 
1993]. But most importantly, cochleagrams keep the fine temporal structure of the signal 
in each channel. 

As referred to in [Slaney and Lyon, 1993], this model is a “severe simplification” of 
some of the intricate operations that take place in the cochlea. The individual compo-
nents in the cochlea are not accurately modeled but the overall mechanic effects are rea-
sonably well captured, and so it does a satisfactory job in calculating a cochleagram. 

3.3.2. Channel Periodicity Analysis 

After determining the auditory nerve firing responses for each frequency channel, the 
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periodicities in the sound wave are analyzed. This is accomplished by computing the 
autocorrelation function in each channel, which results in a two-dimensional image of 
the sound signal, where the horizontal axis represents correlation lag and the vertical axis 
represents frequency. This image is termed correlogram, which literally means “picture of 
correlations” [Slaney and Lyon, 1993]. Each line of the correlogram contains informa-
tion regarding the salience of the periodicities found for a given frequency channel. Like 
the cochleagram, the correlogram activity is measured by pixel intensity in the image.  

The main objective of the correlogram is to summarize the temporal activity at the 
output of the cochlea [Slaney and Lyon, 1993]. In fact, many sounds, and particularly 
musical sounds, are periodic in time, or at least pseudo-periodic. The correlogram is, 
then, a powerful tool for detecting and visualizing the periodicities present in a signal. 
Hence, all channels will show peaks at the horizontal positions corresponding to correla-
tion lags that match the periods of repetition present. Moreover, since independent ACF 
calculations are carried out in separate channels, the pitch detector is not affected by 
phase changes across channels. 

Unlike the previous steps of the AMPD, the procedures for actual periodicity detec-
tion are more controversial. Indeed, whereas the former are based on direct measure-
ments of the signal in the auditory nerve, the latter represent processing that occur in the 
central nervous system and is not directly observable. Namely, the use of the ACF for 
periodicity estimation has been a subject of criticism since some experimental studies 
contradict the ACF [Klapuri, pp. 28]. Anyway, the overall strategy proved successful in 
reproducing several phenomena in human hearing. 

Slaney and Lyon argue that the correlogram is biologically plausible. In reality, a few 
researches suggest that the brain measures periodicities using a neural delay line, a case 
that is supported by the cross-correlator structures found in the brains of owls and cats 
(see [Slaney and Lyon, 1990]). However, there is no physiological evidence of delays that 
are as long as the periods of low-frequency tones [Hartmann, 1997, pp. 294]. 

Concerning computer implementation, the periodicities in the cochleagram are ob-
tained by calculating the short-time ACF of the neural firing responses in each cochlear 
channel for a particular time window. As previously referred to, the sound wave must be 
divided into frames. This is equivalent to multiplying the signal by a sliding rectangular 
window. With the purpose of smoothing out the correlation, a Hamming window is 
used instead (windowType parameter, in Algorithm 3.1, on page 100). In order to im-
prove efficiency, the ACF in each window is performed with the FFT algorithm, accord-
ing to (3.16) (analogous to Equation (3.2) on page 68). 

In (3.16), x[n] represents the signal (a line in the cochleagram) as a function of sam-
ple number n in a particular time frame, w[n] stands for the windowing function (a 
Hamming window, in this case), xw[n] is the windowed signal and Cx[τ] represents the 
autocorrelation of xw[n] in the corresponding time frame, as a function of lag, τ. 
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It is common to normalize the ACF in order that its value at zero lag turns equal to 
one. However, this approach eliminates any indication of the relative power in different 
cochlear channels. In this way, the correlations are partially normalized by the square 
root of the power, so that the dynamic range of the correlogram becomes comparable to 
the one of the cochleagram, while still keeping the relative powers between channels 
[Slaney and Lyon, 1993]. The normalization is conducted as in (3.17), using the fact that 
the ACF at zero lag is equal to the signal power.  
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Figure 3.14b (page 97) shows a 46.44-msec correlogram frame for the saxophone riff 
example we have been using. This picture demonstrates the utility of correlograms in the 
analysis of periodic signals: vertical lines at particular autocorrelation lags can be dis-
cerned, denoting the instants when a large number of cochlear channels fire with the 
same period. This provides a clear indication of the pitch periods that exist in the signal. 

3.3.3. Periodicity Summarization 

The vertical lines across several frequency channels give evidence of pitch. Hence, a 
summary correlogram, or summary autocorrelation function (SACF), is computed by 
summing the ACFs across all channels at each time lag. This measures the likelihood 
that a periodicity corresponding to a particular time lag is present in the sound wave-
form. Moreover, the outcome of the “vertical summation” is related (although not equal) 
to the energy of the associated fundamental frequency. In effect, the autocorrelation 
value for a given F0 candidate in a channel depends on the energy of the F0 in that fre-
quency region but it is not exactly equal to it. In addition, each channel may contain 
contributions from more than one note, e.g., due to harmonic collisions. Thus, the ver-
tical summation of the autocorrelation values for each lag is only an approximation of 
the energy of each pitch. 

As before, this way of performing periodicity summarization is also controversial. In 
reality, the physiological-perceptual mechanisms that combine the information in each 
frequency channel to infer exact pitches are complex and not completely understood yet. 
Therefore, until we know more precisely how the brain perceives pitch, this simple strat-
egy seems acceptable and, probably, instructive, besides proving reasonably successful.  
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Finally, unlike Slaney who normalizes the summary correlogram in each frame (di-
viding it by the value at zero lag) [Slaney, 1998], we use its exact values in order to keep 
their relative saliences across frames. Such information is useful for trajectory segmenta-
tion, as will be explained in Section 4.4. 

An example of a summary correlogram is presented in Figure 3.14d, where the de-
termined pitch candidates are signaled, as will be described in the following paragraphs. 

3.3.4. Salient Peak Detection 

The final step of the multi-pitch detection module consists of finding a set of pitch can-
didates. Unlike the original Slaney and Lyon’s algorithm, where only one pitch is se-
lected in each frame (corresponding to the highest peak in the SACF), we select several 
pitch candidates. 

A straightforward extension of standard monophonic pitch detectors is to select 
more than one peak in each frame. Despite the fact that this extension does not suit well 
the requirements for full music transcription, it worked reasonably well in the context of 
melody detection.  

In this way, we detect the most salient peaks in the summary ACF. To accomplish 
this task, we first look for all peaks, i.e., local maxima, in the SACF, excluding the one at 
zero lag, and obtain their respective saliences, i.e., their (approximate) energies. Then, we 
eliminate all peaks that are not salient enough. To this end, we find the highest peak 
salience, maxPeakSal in Algorithm 3.1, and determine the minimum allowed peak sali-
ence, minPeakSal, using the minimum salience ratio parameter, minSalRatio. A maximum 
of 5 pitch candidates are selected in each frame (maxNPC parameter).  

The detection of the main periodicities in our example is illustrated in Figure 3.14d, 
where the most salient peaks, i.e., pitch candidates, are spotted. The frequencies for the 
pitch candidates are then computed by inverting the periods associated with the found 
peaks. Finally, the pitch saliences in all frames are normalized to the [0; 100] interval, 
and then used in the next stages of the melody detection system. 

Peak identification could be further developed by analyzing the prominence of the 
detected local maxima, i.e., their amplitude relatively to the neighboring valleys [Martins, 
2001, pp. 31]. Hence, a minimum threshold could be defined and peaks that are not 
sufficiently prominent would be discarded. We evaluated this possibility but the conse-
quence was that peaks corresponding to true pitches were often excluded. Indeed, the 
salience of a given peak is disturbed by the presence of other frequency components in 
its vicinity, which may cause significant salience reduction. Therefore, in mixtures of 
several sounds, the analysis of peak prominence does not seem adequate for peak detec-
tion. This was experimentally confirmed by an observed decrease in the overall pitch 
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detection accuracy. 

3.3.5. Illustration of the Algorithm 

The four steps of the AMPD algorithm are illustrated in Figure 3.14: panel a) presents a 
46.44-msec frame of the saxophone riff excerpt we have been using; panels b) and c) de-
pict the corresponding cochleagram and correlogram images, respectively; and panel d) 
shows the summary correlogram, where the candidate pitch periods are marked. There, 
it can be seen that the highest peak in the SACF (approximately at 5.4 msec, i.e., 185.2 
Hz) is a multiple of the true pitch period, whose peak occurs at around 2.7 msec (i.e., 
370.4 Hz). The problem of octave errors will be discussed later on. 
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Figure 3.14. Results of the four stages of the AMPD algorithm. 

3.4. Post-Processing: SACF Enhancement 

As mentioned before, typical post-processor tasks are error detection and correction, 
smoothing, etc. In reality, regardless of the employed pitch extractor, the F0 contour is 
usually noisy, as well as being affected by isolated errors.  
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In our work, such post-processing is carried out in the later stages of the melody de-
tection algorithm. Namely, pitch trajectories are constructed with similar F0 values, 
therefore disallowing pitch outliers. In addition, octave errors are dealt with during the 
identification of melodic notes. Hence, typical post-processing techniques such as 
smoothing of pitch contours, e.g., by low-pass or median filtering (see [Gómez et al., 
2003]) are not conducted in our system. 

Instead, we perform short-term post-processing of the SACF in each frame. In fact, 
the SACF curve provides a good indication of the most likely periodicities in each frame 
of analysis but much redundant, spurious and erroneous information is also present, 
which makes it difficult to determine the true pitches (as seen in Figure 3.14d). Namely, 
peaks at multiples of the fundamental period are common. 

Our strategy is based on a post-processing technique for SACF enhancement, pro-
posed in [Tolonen and Karjalainen, 2000]. This method aims to remove much of the 
noisy and redundant information.  

First, the SACF is expanded in time by a factor of two, as follows (3.18):  
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There, s2[k] denotes a dilated version of the original SACF, s[k], whose number of 
samples is N. We then fill in the “empty values” of the dilated signal via linear interpola-
tion. 

Then, the enhanced SACF (ESACF), sE[k], is obtained by subtracting the expanded 
SACF, sX[k], from the initial SACF and clipping to positive values, as in (3.19). Peak 
picking is then implemented on the enhanced SACF, as was described in Section 3.3.4. 

[ ] [ ] [ ]( )max 0, , 1,2, ,E Xs k s k s k k N= − =  (3.19) 

This procedure removes repetitive peaks with double the time lag when the basic 
peak is higher than the duplicate. Moreover, when the duplicate is higher, the subtrac-
tion reduces its amplitude, which may possibly become smaller than that of the basic 
peak. Thus, no matter if duplicates are effectively suppressed or simply attenuated, oc-
tave errors turn out to be less frequent. This is illustrated in Figure 3.15, for the saxo-
phone example in Figure 3.14. There, it can be seen that the highest peak in the ESACF 
(approximately at 2.7 msec) corresponds now to the true pitch period, and so the octave 
error (highest peak at 5.4 msec in the top panel) is corrected. Also, the peak at the fourth 
multiple (at around 10.8 msec in the SACF) totally disappears in the enhanced SACF. 

However, when time dilation is performed, peaks in the expanded SACF become 
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broader. Consequently, after subtraction, true peaks in the original SACF may become 
less salient or even disappear. In effect, our experimental results confirmed a reduction 
in the rate of octave errors, at the expense of an increased rate of false negatives. Time 
expansions with higher factors have even aggravated the problem.  
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Figure 3.15. SACF Enhancement. 

3.5. Putting It All Together 

The complete pitch detection scheme is summarized in Algorithm 3.1. Parameter defini-
tion is presented in Table 3.1. The parameters for the cochleagram are not included, 
since we used the default values defined in [Slaney, 1998], as described in the text.  

At this point, the motivation for extracting multiple pitches when we are only inter-
ested in the melodic line becomes clearer. Indeed, peaks corresponding to the peri-
odicities of simultaneous notes may compete in the salience curve and be the maximum 
alternately. Moreover, peaks from sub or super-harmonics may also be more salient than 
the ones of the fundamental period, which would cause octave errors, as happens in 
Figure 3.14d. In reality, several pitch detection techniques, e.g., the ones based on the 
ACF (Section 3.1.3) are prone to octave errors. 
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Algorithm 3.1. Pitch detection. 

0. Perform noise suppression, according to the principles of 

RASTA processing45: 

0.1. Invert the resulting spectrum to the time domain. 

1. Obtain the cochleagram for each time frame: 

1.1. Apply Lyon’s ear model. 

2. Determine the correlogram for each time frame: 

2.1. Multiply each line of the cochleagram frame by a Hamming 

window (Equation (3.16)). 

2.2. Determine the autocorrelation function for each channel 

via FFT (Equation (3.16)). 

2.3. Normalize the ACF in each channel (Equation (3.17)). 

3. Compute the summary ACF (i.e., summary correlogram) for each 

frame: 

3.1. Vertically sum the ACF across all channels. 

3.2. Enhance the achieved SACF46. 

4. Detect candidate peaks in the SACF. 

4.1. Detect all the peaks in the SACF. 

4.2. Determine the minimum allowed peak value (salience). 

- maxPeakSal  maximum peak value. 

- minPeakSal  maxPeakSal × minSalRatio. 

4.3. Eliminate the peaks with low salience: 

4.3.1. If peak salience < minPeakSal, eliminate peak. 

4.4. Sort the resulting peaks in descending salience order 

and keep the top maxNPC ones. 

4.5. Invert pitch periods to obtain frequencies. 

5. Normalize the pitch saliences in all frames to the  

[0; 100] interval. 

6. Return the pitch frequencies and saliences for all frames. 

                                                        
45  As will be seen in Section 3.6, RASTA processing was excluded from the final algorithm, since it 

gave rise to slightly worse results. For this reason, we started the algorithm with step number zero. 
46  Again, this step was removed as a consequence of its negative effect on the final pitch detection accu-

racy. 
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Parameter Name Parameter Value 

frame length 46.44 msec (2048 samples, when fs = 44100 Hz) 

hop size 5.8 msec (256 samples) 

RASTA frequency range [50; 6000] Hz 

windowType Hamming 

minSalRatio 0.2 

maxNPC 5 

Table 3.1. AMPD parameters. 

Unlike some other algorithms, our method does not deal with the well-known and 
complex “octave problem”, except for the issues described in the post-processing section. 
In fact, at this point it is not strictly necessary to conclude if a given pitch candidate cor-
responds to a real note or appears as a ghost note, whose fundamental frequency is a 
harmonic of some real note. Some of the ghost notes will be eliminated already at this 
stage based on the pitch salience threshold, whereas others will be eliminated in the fol-
lowing phases of the melody detection system.  

Therefore, selecting several pitch candidates allows for the detection of 
lower-salience melody notes, which would not be captured if only a single pitch was ex-
tracted. In this way, it is possible to keep track of the global temporal continuity of each 
pitch. As mentioned, the motivation for this policy is that missing notes cannot be re-
covered afterwards but, instead, false candidates can be eliminated in later stages. 

3.6. Experimental Results, Analysis and Conclusions 

The evaluated pitch detectors were implemented in Matlab 7. We also made use of Mal-
colm Slaney’s Auditory Toolbox, written in Matlab too (except for a few functions re-
lated to the ear model that were coded in C, e.g., filterbank cascade output and auto-
matic gain control; filter design, periodicity analysis in each channel and periodicity 
summarization were all programmed in Matlab). 

The accomplished results, which justify our selection of the AMPD, are presented 
and discussed in the next paragraphs. The main limitations of the proposed pitch detec-
tion scheme are discussed and suggestions for improvements are drawn. 
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A. Analysis of Results 

We start the evaluation by comparing the performances of the analyzed pitch detec-
tors (see Appendix A), without pre or post-processing. As referred to, at most five pitches 
were extracted in each frame. The performance was then evaluated by comparing the 
annotated F0 in each melodic frame and the closest extracted F0. 

A summary of the achieved results, sorted by raw pitch detection accuracy (gray col-
umn47), is presented in Table 3.2. There, the average global pitch detection accuracy is 
presented for each of the five studied algorithms, both regarding raw (MRPA) and the 
chroma (MCPA) pitch accuracy. Furthermore, separate figures for our test-bed (PDB) 
and the MIREX’2004 database (M04) are provided. In the former, since manual annota-
tions were conducted, the target F0s were assigned the values of the equal temperament 
frequencies. Hence, the extracted F0s were quantized as well to the ETFs. Due to quanti-
zation, additional pitch errors occur for notes with glissando and/or vibrato.  

 

Avg PDB Avg M04 Global Average 
Pitch Detector 

MRPA  MCPA MRPA MCPA MRPA MCPA 

AMPD 80.2% 80.3% 81.9% 82.3% 81.0% 81.2% 

Spectral ACF 69.7% 70.0% 68.5% 68.5% 69.1% 69.3% 

STFT Harmonics 67.2% 67.9% 69.8% 71.9% 68.4% 69.8% 

ACF 58.3% 65.0% 69.2% 72.0% 63.5% 68.3% 

Probabilistic 58.1% 68.7% 55.8% 67.0% 57.0% 67.9% 

Table 3.2. Comparison of pitch detection algorithms. Algorithms are sorted by raw pitch 
detection accuracy.  

An immediate conclusion from the previous table is that the auditory-model-based 
pitch detector surpasses by a healthy amount all the other methods, in all evaluated met-
rics. Also, it can be seen that in the first three algorithms, the raw and the chroma met-
rics are nearly the same, i.e., harmonic-related peaks may have been extracted but the 
true F0 was detected as well. However, the ACF and, especially, the probabilistic pitch 
detector had some difficulties in this respect. 

Particularly intriguing was the poor behavior of the probabilistic approach, based on 
[Goto, 2000]. In reality, the performance reported by the author is considerably better. 
As will be seen in Chapter 5, the results obtained by Tappert and Batke’s system in the 

                                                        
47  In the result tables presented throughout this document, we highlight specific columns by using gray 

shading. 
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MIREX’2004 evaluation (which follows rather closely Goto’s system) [Gómez et al., 2006] 
are also somewhat low. Nonetheless, the behavior of the actual PreFEst system in the 
MIREX’2005 evaluation was much better. Therefore, it is likely that such discrepancies 
derive mostly from peculiarities that neither ours nor Tappert and Batke’s implementa-
tion could account for. 

 

AMPD AMPD + RASTA AMPD +  
Enhanced SACF 

AMPD  
Single Pitch ID 

MRPA MCPA    MRPA MCPA MRPA MCPA MRPA MCPA 

1 97.0 97.1 96.6 96.6 93.1 93.1 28.1 61.7 

2 75.8 75.9 77.9 77.9 70.1 70.6 50.1 72.0 

3 89.4 89.5 88.7 88.7 83.6 83.6 77.6 82.3 

4 76.4 76.7 78.8 78.8 75.5 75.5 63.6 67.4 

5 62.3 62.3 64.8 64.8 54.8 54.8 34.6 49.9 

6 75.2 75.2 76.9 76.8 64.5 64.6 52.1 68.6 

7 95.7 95.7 96.6 96.7 88.8 88.9 77.3 91.6 

8 91.7 91.7 93.8 93.8 92.3 92.3 62.5 77.1 

9 55.0 55.0 61.4 61.4 48.3 48.3 46.0 46.5 

10 70.9 71.2 72.7 72.7 65.7 65.7 44.1 51.6 

11 92.4 92.5 88.9 88.9 91.8 91.8 37.1 85.6 

12 89.7 89.7 87.5 87.5 86.4 86.5 82.1 84.3 

13 93.6 93.6 92.3 92.3 92.9 92.9 60.1 78.0 

14 76.5 77.4 73.9 74.1 71.0 71.0 63.6 67.7 

15 81.7 82.0 79.2 79.3 80.6 80.7 54.9 67.5 

16 80.8 81.7 82.3 82.4 36.2 37.4 51.7 72.7 

17 73.7 73.7 73.4 73.4 74.2 74.2 60.5 67.2 

18 79.7 79.9 74.9 75.0 78.9 78.9 32.2 37.2 

19 75.1 75.5 65.8 66.7 61.9 62.0 25.3 31.7 

20 80.3 81.1 77.1 77.9 80.1 80.5 45.3 49.1 

21 88.2 88.4 86.0 86.2 87.6 87.6 64.0 67.1 

Avg 
PDB 

80.2% 80.3% 81.5% 81.6% 75.3% 75.4% 52.1% 68.6% 

Avg 
M04 

81.9% 82.3% 79.2% 79.5% 75.0% 75.2% 54.0% 62.3% 

Avg 81.0% 81.2% 80.4% 80.6% 75.2% 75.3% 53.0% 65.6% 

Table 3.3. AMPD results: pre and post-processing and single-pitch detection. 
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Based on the better behavior of the AMPD, we selected it as the pitch detector of 
our melody detection system. In this way, from this point forward, all the presented 
numbers refer to this algorithm. 

After selecting the AMPD, we evaluated its accuracy when pre and post-processing 
was carried out. Furthermore, the case of selecting only the most salient pitch in each 
frame was studied. The achieved performances are presented in Table 3.3. 

When looking at the first column in this table (after the ID column), we can see 
that, generally, the highest accuracy values (≥90%) correspond to excerpts with high 
SNRs (e.g., IDs 1, 3, 7, 8, 11, 12 and 13 - see description of excerpts in Appendix B). The 
exception is in the opera samples (IDs 18 and 19), which we suppose to be a conse-
quence of very fast pitch variations in some notes with extreme vibrato (both in ampli-
tude and frequency). As will be seen in Figure 3.16 (page 106), the employed pitch detec-
tor responds reasonably well to fast pitch variations. However, in extremely fast situa-
tions, it looks like the assumed frame stationarity no longer applies, making pitch detec-
tion more vulnerable (the SACF becomes noticeably noisier). 

In the same column, we observe that excerpts with medium/high SNR have accu-
racy values around 80%. For samples where the SNR is not so favorable, the perform-
ance drops to values close to 70% and would have decreased even more if excerpts from 
styles such as dance music had been used. As expected (and confirmed by the obtained 
results) in those cases many melodic pitches pass undetected, on account of being 
masked by more intense sounds that stem mostly from strong percussive sounds.  

The particularly low performance of two excerpts in the first column, namely Ricky 
Martin (5) and Eliades Ochoa (9), caught our attention. In both cases, glissando was of-
ten present in the attack of the notes, which has given rise to errors in the computation 
of pitch accuracy, not on its detection (recall that a fixed frequency value was assigned to 
all the time frames of a target note, due to manual annotation). Also, especially in Eli-
ades Ochoa’s excerpt, it was found that the used tuning did not match the ETFs. Owing 
to quantization, semitone errors have led to this low performance. Nonetheless, both 
problems will be tackled in the next chapter, where equal temperament notes are identi-
fied, coping with note dynamics as well as the tuning issue. 

Concerning percussive “noise”, no benefits arose from the use of RASTA 
pre-processing, as can been in Table 3.3. Indeed, the attained pitch detection accuracy 
was nearly the same with and without noise suppression. In some excerpts, a few origi-
nally less salient true peaks become now more evident, but the improvements are not 
significant. This is not surprising since the underlying RASTA assumption that the har-
monic peaks are clearly above the noise floor means that the harmonic peaks can be eas-
ily detected. Another effect of RASTA processing was that the filtered signals sounded 
“blurred”. After the conducted analysis, we decided not to include the pre-processing 
stage, since the overall pitch detection accuracy decreased slightly.  
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As for SACF enhancement, the accomplished figures were usually below the ones 
achieved without post-processing. This was particularly notorious in a MIDI synthesized 
sample (16), where they decreased dramatically. In reality, the subtraction of the SACF 
may induce a noteworthy attenuation, or even to the disappearance, of several true 
peaks. This seems to have occurred thoroughly in that MIDI excerpt. 

Finally, in order to quantitatively justify our strategy of selecting more than one 
pitch per frame, we evaluated the AMPD when only one pitch was selected in each frame 
(the most salient one in the SACF). As expected, the performance has worsened substan-
tially. However, the discrepancy between raw and chroma pitch accuracy directed our 
attention to a few interesting cases. In fact, in some situations the inaccuracy of the sin-
gle-pitch detector was either as a consequence of octave errors (from real pitches or har-
monic peaks) or just because the melodic pitch was less intense than the pitch of other 
simultaneous notes. The first situation corresponds to the following excerpts: Battlefield 
Band (ID 11, instrument playing one octave below), Hallelujah (2, chords from the cho-
ral ensemble), Claudio Roditi (7, instrument one octave below) or midi1 (16, detection 
of sub or super-harmonics). In these samples, the chroma accuracy is approximately the 
same as the one attained when multiple pitches are selected. In some other excerpts, the 
pitch accuracy diminished since the melodic pitch was simply less intense than the pitch 
from other simultaneous notes. This is the case of Pachelbel (ID 1, strong bass), Avril 
Lavigne (6, strong guitars with distortion) or daisy3 (13, strong guitars). Finally, in some 
excerpts both situations occurred, namely in Pachelbel (1, strong bass notes one octave 
below) or Ricky Martin (5, strong bass, sometimes octave-related). 

Regarding the behavior of the opera excerpts in the single-pitch evaluation, the low 
values in the MRPA metric are not surprising because of octave errors. Even so, a much 
better performance was expected in the MCPA measure. While analyzing the obtained 
results, we noticed that the frequency of the highest peak in the SACF was often “al-
most” harmonically-related to the annotated frequency. To illustrate, one of the analysis 
frames had a target F0 of 625 Hz and a pitch candidate at 630 Hz (a difference of 13.8 
cents), but the highest peak had an associated frequency of 165.8 Hz, while the theoreti-
cal 4th sub-harmonic was expected at 156.3 Hz (a difference close to one semitone). 

In terms of dynamics, the described pitch detection algorithm can cope reasonably 
well with fast pitch variations. This is illustrated in Figure 3.16 for an opera excerpt (op-
era female in Table 2.1). There, the continuous curve denotes the annotated F0, whereas 
the dots represent the extracted F0 sequence. Fine precision in tracking strong vibrato 
conditions (across 3 semitones with around 7 Hz vibrato frequency, in this example) is 
observed. Nonetheless, it is important to say that in extremely fast pitch variations such 
exactness is not so pronounced, since the precise location of the relevant peaks in the 
summary correlogram becomes harder to resolve due to the lack of signal stationarity. 
Anyway, from a melodic transcription point of view, small pitch differences are accept-
able, as long as the actual MIDI note number is correctly determined. However, in appli-
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cations such as expressiveness analysis, precise pitch information is crucial. 
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Figure 3.16. Response of the AMPD to fast pitch variations. 

B. Limitations of the Algorithm and Possible Improvements 

The main shortcoming of the AMPD is its high computational cost. In fact, in our 
computing system, the algorithm takes an average of 24 min and 24 sec to complete the 
analysis of a 20 sec’s excerpt, which corresponds to about 97% of the total computa-
tional time of melody detection. This is a result of the high number of filters used and of 
the almost entire native Matlab implementation. Porting the code to C could reduce the 
execution time by an order of magnitude. Restricting the filterbank to a narrower fre-
quency range would also reduce the execution time. In effect, by default the frequency 
range of the filterbank goes up to the Nyquist frequency; anyway, this range could be 
narrowed, since the amplitudes of the higher harmonics in musical instruments are usu-
ally low. A typical maximum frequency of 5 kHz should suffice, given the finer sensitivity 
of the human ear in that range and the characteristics of musical instruments. A related 
but simplified version proposed in [Tolonen and Karjalainen, 2000] and based on 
[Meddis and Hewitt, 1991], where only two channels are used, could be exploited as 
well. The authors argue that, despite the model simplifications, the method qualitatively 
retains the performance of multi-channel systems. However, they did not conduct any 
real tests using continuous complex song excerpts. 

As for peak masking in the SACF, it is likely that the AMPD could be improved by 
carrying out frequency analysis in each channel, in order to compensate for noisy fre-
quency regions where masking is more likely to occur. But this would increase even more 
this already costly algorithm. 

The followed pitch detection approach does not accomplish voicing analysis, i.e., it 
assumes that an F0 is always present, except in frames where the signal energy is exces-
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sively low. This is sometimes untrue, e.g., in noisy or percussive segments. Nevertheless, 
solely by analyzing a temporal frame, we cannot assure if it corresponds to an isolated 
percussive sound or a mixture of different, possibly harmonic, sounds. Therefore, we 
simply select the highest peaks in each frame’s SACF, which are then either used or ig-
nored if reasonable peak continuation can be accomplished or not. Hence, ghost tracks 
usually emerge, as will be seen in the next chapter. 

In our peak detection scheme, we did not add any constraints as to the closeness of 
adjacent peaks. This is particularly evident in noisy SACFs, leading sometimes to the 
selection of peaks with very close frequency values. As a consequence, some ambiguities 
in peak continuation may arise, as we will discuss in Chapter 4 (fortunately, these are not 
very frequent). Moreover, this strategy is not very faithful to the related physiologic 
mechanisms in the ear. Indeed, an important phenomenon of auditory physiology is 
lateral inhibition (critical-band masking), in which the presence of a strong peak makes 
the ear less sensitive to sounds of about the same frequency [Hartmann, 1997, pp. 256]. 
In a first attempt to deal with this issue, low-pass filtering was utilized. However, the net 
effect was that the overall pitch detection accuracy decreased because true peaks with low 
prominence were filtered out. We could improve this, for instance by implementing 
peak validation using the detected pitches in the past few frames, where matched pitches 
would be preferred over close unmatched ones. 

In relation to the suggested memory-based approach, the algorithm could also be 
improved by taking advantage of the evidence that abrupt F0 changes are not very com-
mon in musical signals (except for extreme vibrato conditions). Thus, the pitches found 
in previous frame(s) could support the detection of F0 candidates in a given analysis 
frame. In this way, low salience peaks (that would normally be excluded) could now be 
selected based on their occurrence in recent frames. 

Despite the fact that our pitch detection scheme performed reasonably well in a 
melody extraction task (at least in the used dataset), the employed peak detection meth-
odology may produce both ghost pitch candidates (e.g., sub or super-harmonics, noisy 
peaks) and false negatives. Regarding particularly the maxNPC parameter, we found ex-
perimentally that lower values give rise to a high number of missing melodic pitches, 
whereas higher values jeopardize the selection of the final melody, since too many notes 
are created (as will be discussed in Chapter 5). Therefore, it would be interesting to 
check if this stage could be improved by making use of techniques from polyphonic 
pitch detection, as the ones described at the beginning of this chapter.  

Furthermore, computing the SACF just by vertical summation in the correlogram 
might be problematic since several sounds occur simultaneously, interfering with each 
other. In reality, sounds exhibiting inharmonicities or mixtures with harmonic collisions 
cause incorrect pitch saliences.  

Inharmonicities originate deviations from the ideal harmonic structure and so the 
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periodicities detected in the higher channels do not exactly match the periodicities in the 
lower channels. For example, in piano sounds a slight left shift in periodicity may be 
observed in the upper channels because the frequencies of higher harmonics are slightly 
above their theoretical values. Consequently, the obtained peak may become broader, 
have lower amplitude than it should or, most likely, deviate a little from the frequency of 
the first harmonic, usually considered as the F0. Nonetheless, with respect to the latter 
point, the achieved pitch is more accurate in perceptual terms, as pointed out in [Slaney 
and Lyon, 1990]. 

As for harmonic collisions, no procedure was executed to split apart the energies of 
common harmonics that come from different sources. Hence, after vertical summation, 
the pitch salience for a given time lag contains both the energy of a note at that pitch 
and the energy of common harmonics from notes at different F0s.  

Inharmonicity and, most importantly, harmonic collisions could be tackled, at least 
to some extent, by extending the devised periodicity summarization method. Namely, we 
could pursue a multi-pitch detection approach such as Klapuri’s [Klapuri, 2003], where 
spectral smoothness and iterative estimation and cancellation are conducted. Moreover, 
in another work, Klapuri implemented a few modifications to an auditory-model-based 
pitch detector developed by himself and Jaakko Astola [Klapuri and Astola, 2002; 
Klapuri, 2004, pp. 44] that could possibly be applied to the auditory model we adopted. 
There, the ACF calculations are replaced by a technique termed harmonic selection and 
a more complex sub-band-weighting is performed for the combination of results across 
bands. Basically, the salience of each F0 candidate is computed using only their respec-
tive partials and ignoring the spectrum between the partials. Furthermore, multiple F0 
candidates are determined following an intricate iterative estimation and cancellation 
strategy: the predominant pitch is first selected and cancelled; the estimation is then re-
peated for the residual sound and the next detected pitch removed; this is repeated for 
the number of sounds present.  

It is also important to refer that periodicity computation based on the ACF may in-
duce a large peak corresponding to the root tone of a chord. This represents a false pitch 
candidate and is a limitation in music analysis, namely for full music transcription (e.g., 
detection of note chords is difficult to carry out in this manner). However, with respect 
to melody detection, a leading musical part is assumed to exist (see Section 2.3). In this 
way, a clear peak at the fundamental period (or at a multiple) is usually found. Addition-
ally, even when root tone chords appear, these might be discarded in the subsequent 
stages of the melody detection system in case their pitches are sufficiently low. 

C. Other Possible Improvements 

Available content and context information might be used as well for supervising the 
pitch detection process. For example, if we knew beforehand the instrument used for 
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sound production, algorithmic parameters could be adapted and optimized accordingly. 
Moreover, different pre-processing methods might suit better particular instruments (e.g., 
singing voice pre-processing requirements are necessarily different from the ones of wind 
instruments; in string instruments, their specific resonant properties might need to be 
dealt with; also, inharmonicity might have to be considered in instruments such as pi-
ano). Additionally, available information on the key or melodic profile could guide the 
F0 detection process. Kashino and colleagues made use of content and context informa-
tion with recourse to internal sound source models [Kashino et al., 1995]. Since we focus 
on an entirely automatic system for melody detection, if key or instrument information 
were used, these should be automatically “learned” by the algorithm. 

Finally, in the implemented ear model the envelope is not extracted in each band, 
unlike in [Meddis and O’Mard, 1997; Meddis and Hewitt, 1991]. Thus, it would be in-
teresting to evaluate the behavior of the used model if a low-pass filter was applied after 
half-wave rectification, i.e., keeping mostly spectral interval information. 

 



 

 



 

Chapter 4  
 
FROM PITCHES TO NOTES 

 “The messages in language are built out of a limited set of units (i.e., pho-

nemes). Similarly, the messages in music are built out of a limited set of 

units (i.e., scaled notes)” 

Stephen Handel, “Listening: An Introduction to the Perception of Auditory Events”, 1989 
 (pp. 332) 

Several applications of melody detection, namely melody transcription, 
query-by-melody or motivic analysis, require the explicit identification of musical 
notes, which allow for the extraction of higher-level features that are musicologi-

cally more meaningful than the ones obtained from low-level pitches.  

Despite the importance of the note as the basic representational symbol in Western 
music notation, the explicit and accurate recognition of musical notes is somewhat over-
looked in automatic music transcription research. In effect, most approaches disregard 
the importance of notes as musicological units having dynamic nature.  

Therefore, in this chapter we propose a mechanism for quantizing the temporal se-
quences of the detected F0s into note symbols, characterized by precise temporal 
boundaries and note pitches (namely, MIDI note numbers). The developed method aims 
to cope with typical dynamics and performing styles such as vibrato, glissando or legato. 

Section 4.1. Introduction  

We start this chapter with an analysis of the importance of the note in Western mu-
sic. We then review the existing strategies for explicit note determination.  

Section 4.2. Pitch Trajectory Construction (PTC) 

Our scheme for detection of musical notes starts with the construction of a number 
of pitch tracks, formed by connecting consecutive pitch candidates with similar fre-
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quency values. The objective is to find regions of stable pitches, which indicate the pres-
ence of musical notes. 

Here, the frequencies in each track are first quantized to MIDI note numbers. Then, 
peak continuation based on frequency proximity is accomplished, allowing track inactiv-
ity and tackling possible ambiguities via a look-ahead procedure. Short tracks are then 
eliminated and the unused pitch candidates are reassigned to the validated tracks. 

Section 4.3. Frequency-Based Track Segmentation 

Since the obtained trajectories may contain more than one note, temporal segmen-
tation must be carried out. This is performed in two phases, recurring to the pitch and 
salience contours of each track, i.e., frequency and salience-based segmentation.  

In frequency-based segmentation, the objective is to separate all notes of different 
pitches that are included in the same trajectory, coping with glissando, legato and vi-
brato, as well as other sorts of frequency modulation. Moreover, the precise timings of 
each note candidate are adjusted. 

After segmentation, a final MIDI note number is assigned to each note candidate. 
The devised note labeling approach deals with possible tuning inaccuracies. 

Section 4.4. Salience-Based Track Segmentation 

With respect to salience-based segmentation, the objective is to separate consecutive 
notes at the same pitch that may have been incorrectly interpreted as forming one single 
note. To this end, the note candidates that arise from the previous step are segmented 
based on pitch salience minima, which mark the temporal boundaries of each note.  

To increase the robustness of the algorithm, note onsets are detected directly on the 
audio signal and used to validate the salience minima found in each note candidate. 

Section 4.5. Putting It All Together  

The complete note determination scheme is summarized in algorithmic form and 
model parameters are listed in this section. 

Section 4.6. Experimental Results, Analysis and Conclusions 

Finally, experimental results are presented and examined. The main pros and cons 
of the followed methodology are analyzed and directions for future improvements are 
pointed out. 
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4.1. Introduction 

In this section, we discuss the importance of the note as a basic representational symbol 
in Western music and recycle the discussion on tonal fusion and perception of musical 
notes. Then, we review the main strategies towards note detection, both in monophonic 
and polyphonic contexts. 

4.1.1. The Note as a Basic Representational Symbol 

As mentioned, the note is the fundamental building block of Western music notation. 
When characterizing a musical note (for example in a written score), features such as 
pitch, intensity, rhythm (typically representing accents and timing information, e.g., dura-
tion, onset and ending time), performance dynamics (glissando, legato, vibrato, tremolo, 
etc.) and sometimes even timbre are considered. Hence, in this respect, the goal of any 
automatic transcription system would be to capture all this information.  

We explicitly extract pitch, intensity and timing data. As for note dynamics, this is 
implicitly conveyed in the pitch and intensity contour of each note; however, we will not 
explicitly state, e.g., if a not has vibrato or tremolo, though the analysis of the contours 
could provide such information. Concerning note timbre, we conducted some efforts to 
model it, with the purpose of implementing note clustering in the next chapter. 

While the note is central in Western music notation, it is not evident if the same 
applies when we talk about perception. In reality, some researchers defend that, instead 
of notes, humans extract auditory cues that are then grouped into percepts, i.e., brain im-
ages of the acoustical elements present in a sound. Eric Scheirer argues that “most stages 
of music perception have nothing to do with notes for most listeners” [Scheirer, 2000, 
pp. 69]. In fact, he adds, “the acoustic signal must always be considered the fundamental 
basis of music perception”, since “[it] is a much better starting point than a notation in-
vented to serve an entirely different mode of thought” [Scheirer, 2000, pp. 68]. 

Namely, tonally fused sounds seem to play an important role in music perception 
[Scheirer, 2000, pp. 30]. For example, as referred to in Section 2.4, the sounds produced 
by pipe organs perceptually fuse into one single percept, i.e., the various concurrent 
sounds are unconsciously perceived as a whole. Thus, trying to explicitly extract the indi-
vidual musical notes that are enclosed in a tonally fused sonic object seems perceptually 
unnatural. 

Nevertheless, we could also argue that notes are indeed perceived in some situations, 
for instance while listening to monophonic melodies or to songs where the melody obeys 
our previous definition. In such cases, the average listener easily memorizes them and 
replicates what he hears, for example by humming or whistling. In addition, he can even 
try to mimic the timbre of the singer, as well as some of the performance dynamics. In 
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other words, his mental constructs seem to correspond to musical notes, although he 
may or may not be aware of that.  

Regardless of the arguments that can be presented to support or reject the note as a 
perceptual construct, the identification of musical notes is essential in music transcrip-
tion, in order for a symbolic representation to be derived. As a result, in our work we 
consider musical notes as the basic building blocks of music transcription and, therefore, 
investigate mechanisms to efficient and accurately identify them in musical ensembles. 

4.1.2. Current Approaches for Note Determination 

The identification of musical notes is one of the less explored areas in the field of auto-
matic music transcription. Regarding the particular melody transcription problem, this is 
confirmed by the absence of a note-oriented metrics in the audio melody extraction track 
of MIREX’2005.  

Past work in the field addressed especially the extraction of pitch lines, without ex-
plicit determination of notes, or using ad hoc algorithms for the segmentation of pitch 
tracks into notes (e.g., segment as soon as MIDI note numbers change). This has turn 
out to be difficult for some signals, particularly for singing [Klapuri, 2004, pp. 3]. In ef-
fect, the presence of glissando, legato, vibrato or tremolo makes it sometimes a challeng-
ing task, as illustrated in Figure 3.16. Yet, amplitude and frequency modulation are 
important aspects to consider when segmenting notes. 

Different kinds of methodologies for note determination, e.g., note segmentation 
and labeling, are summarized in the following paragraphs. 

A. Note Segmentation 

Amplitude-based Segmentation 

In monophonic contexts, note segmentation is typically accomplished directly on 
the temporal signal. In fact, since no simultaneous notes occur, several systems first im-
plement signal segmentation and then assign a pitch to each of the obtained segments, 
e.g., [Chai, 2001, pp. 48]. In this strategy, silence detection is frequently exploited, as this 
is a good indicator of note beginnings and endings. In algorithmic terms, silences corre-
spond to time regions where the amplitude of the signal (the root mean square energy is 
generally used) falls bellow a given threshold. The robustness of these methods is usually 
improved by employing adaptive thresholds [McNab et al., 1996b; Chai, 2001].  

Other related, yet more elaborate schemes, tackling especially the transcription of 
the singing voice in monophonic audio, are pursued in [Haus and Pollastri, 2001; 
Clarisse et al., 2002], where several procedures are carried out in order to improve the 
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reliability of the determined segments. For instance, Goffredo Haus and Emanuele Pol-
lastri measure the RMS power of the signal and compare it with a signal-to-noise thresh-
old for segment boundary detection. In each segment voiced regions are then identified, 
which are the ones used for pitch detection. 

The main limitations of amplitude-based segmentation come from the difficulties in 
accurately defining amplitude thresholds (particularly in polyphonic contexts, where 
sources interfere severely with each other). This may give rise to both excessive and miss-
ing segmentation points, namely to the unsuccessful separation of notes played legato. 
Moreover, in a polyphonic context several notes may occur at the same time, with vari-
ous overlapping patterns. Consequently, note segmentation cannot be performed neither 
before nor independently of pitch detection and tracking. 

Frequency-based Segmentation 

Frequency variations are usually better indicators of note boundaries, especially in 
polyphonic contexts. Here, frame-wise pitch detection is first conducted and then pitch 
changes between consecutive frames are used to segment notes. To this end, frequency 
proximity thresholds are normally employed, e.g., [McNab et al., 1996b]. 

However, several of the developed systems do not adequately handle note dynamics. 
This is frequently the case in transcription systems dedicated to specific instruments such 
as piano, which do not modulate substantially in pitch, e.g., [Hawley, 1993].  

In [Martins, 2001], pitch trajectories are created with recourse to a maximum fre-
quency distance of half a semitone. Nevertheless, smooth frequency transitions between 
notes might lead to trajectories with more than one note. This was not attended to ap-
parently because most of the used excerpts came from MIDI-synthesized instruments 
played without note legato. 

Martin bases the identification of musical notes on the continuation of pitches 
across frames and on the detection of onsets. This information is combined and analyzed 
in a blackboard framework [Martin, 1996]. The used frequency proximity criteria used 
are not described but, apparently, note hypotheses may contain more than a single note 
in the case of smooth pitch transitions. The provided examples are not conclusive since 
tests were implemented with piano sounds only, characterized by having sharp onsets 
and not modulating significantly in frequency.  

The problem of trajectories containing notes of different pitches was addressed in 
[Eggink and Brown, 2004]. There, the frequency distance is computed based on an aver-
age of the past few F0 values. The authors argue that this allows for vibrato while break-
ing up successive tones even when they are separated by only a small interval. However, 
even in this situation, it is not guaranteed that individual tracks will contain one single 
note. Indeed, depending on the defined threshold, smooth frequency transitions be-
tween consecutive notes could still be kept in a single track, as we have experimentally 
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confirmed. In this situation, the frequency values in the transition may not differ con-
siderably from the average of the previous values. In other situations, the two notes could 
be segmented somewhere during the transition, rather than at its beginning. Also, the 
use of a small interval is not robust to missing pitches in tracks containing vibrato, which 
could generate abrupt frequency jumps.  

In brief, the main drawback of the previous methodologies is that the balance be-
tween over and under-segmentation is often difficult: if small frequency intervals are de-
fined, the frequency variations in fast glissando or vibrato zones might be erroneously 
separated into several notes; on the other hand, if larger intervals are permitted, a single 
segment may contain more than one note.  

Probabilistic Frameworks for Frequency-based Segmentation 

Some of the weaknesses described above are tackled under probabilistic frameworks. 
Namely, Timo Viitaniemi and colleagues employ a probabilistic model for converting 
pitch tracks from monophonic singing excerpts into a discrete musical notation (i.e., a 
MIDI stream) [Viitaniemi et al., 2003]. The used pitch-trajectory model is an HMM 
whose states correspond to MIDI note numbers, where an acoustic database is utilized to 
estimate the observation probability distribution. In addition, a musicological model 
estimates the key signature from the obtained pitch track, which is used to give informa-
tion on the probability of note occurrence. Finally, inter-state transition probabilities are 
estimated based on a folk song database and a durational model is used to adjust state 
self-transition probabilities according to the tempo of the song (known a priori). The 
output of the HMM is the most likely sequence of discrete note numbers, which (ideally) 
copes with both pitch and performing errors. Note boundaries then directly denote tran-
sitions of MIDI numbers. Moreover, note durations are adjusted recurring to tempo 
information. 

Ryynänen and Klapuri handle note segmentation in the context of a polyphonic 
transcription system [Ryynänen and Klapuri, 2005a]. The overall strategy is very elegant 
and apparently robust. There, two probabilistic models are used: a note event model, 
used to represent note candidates, and a musicological model, which controls the transi-
tions between note candidates by using key estimation and computing the likelihoods of 
note sequences. In the note event model, a three-state HMM is allocated to each MIDI 
note number in each frame. The states in the model represent the temporal regions of 
note events, comprising namely an attack, a sustain and a noise state, and therefore tak-
ing into consideration the dynamic properties and peculiarities of musical performances. 
State observation likelihoods are determined with recourse to features such as the pitch 
difference between the measured F0 and the nominal pitch of the modeled note, pitch 
salience and onset strength. The observation likelihood distributions are modeled with a 
four-component GMM and the HMM parameters are calculated using the Baum-Welch 
algorithm. The note and the musicological models then constitute a probabilistic note 
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network, which is used for the transcription of melodies by finding the most probable 
path through it using a token-passing algorithm. Tokens emitted out of a note model 
represent note boundaries. 

Segmentation of Consecutive Notes at the Same Pitch 

In the systems where segmentation is primarily based on frequency variations, con-
secutive notes with equal pitches are often left unsplit. This occurs both when legato is 
performed and when a maximum inactive time (normally referred to as “sleeping time”) 
is allowed in pitch tracking. This track inactivity is often tolerated in order to handle 
situations when pitches pass undetected in a few frames, despite the fact that the respec-
tive note is sounding.  

Approaches that do not permit track inactivity or admit it only during very short in-
tervals usually cause over-segmentation. This seems to be the case of Bello’s method (de-
scribed in [Gómez et al., 2006]). Although not many details are provided, we can pre-
sume that the creation of pitch tracks did not allow sufficient frame inactivity, since a 
profusion of fragments corresponding to the same note often results. 

In [Eggink and Brown, 2004], frame sleeping is consented to and notes are then split 
when abrupt discontinuities in F0 intensity occur. However, this simple scheme suffers 
from the same shortcomings associated with amplitude-based note segmentation, namely 
regarding the accurate definition of thresholds: a satisfactory balance between over and 
under-segmentation is hard to attain. 

This problem is partly solved in [Kashino et al., 1995], where terminal point candi-
dates, which correspond to clear minima in the energy contour of each pitch track, are 
either validated or rejected according to their likelihood and on the detected rhythmic 
beats. This is much more robust than using only amplitude information but, even so, 
consecutive notes occurring in between beats may be left unsegmented. 

In the note segmentation scheme described in [Ryynänen and Klapuri, 2005a], it 
this not obvious how this issue is addressed. In reality, the connections between the 
three states in the models of note events are not strictly left-to-right: the attack state has a 
left-to-right connection with the sustain state, but this and the noise state might alter-
nate. Thus, when a token is sent to the attack of another note event, a segmentation 
boundary becomes evident, no matter whether the MIDI note number is the same or 
not. However, when there is a transition from the noise to the sustain state in a note 
model, it is not clear if pitch was undetermined for a while or if two consecutive notes at 
the same pitch were present. 

B. Note Labeling 

After segmentation, a note label has to be assigned to each of the identified seg-

 



118 Chapter 4.   From Pitches to Notes  

ments. Typically, pitch detection is executed on short time frames and the average F0 in 
a segment is quantized to the frequency of the closest equal temperament note, e.g., 
[McNab et al., 1996a; Martins, 2001]. This averaging strategy might deal well with fre-
quency modulation, but does not seem appropriate when glissando is present. 

In other approaches, the average F0 is computed in the central part of the note, 
since pitch errors are more likely to occur at the attack and at the decay [Clarisse et al., 
2002]. In monophonic transcription systems, filtering may be implemented as well to 
cope with outliers or octave errors [Clarisse et al., 2002]. In addition, the median of F0 
values may be used rather than the average. 

C. Adaptation to Instrument and Singer’s Tuning 

Methodologies for note labeling should handle the case where songs are performed 
off-key, e.g., when the instruments are not tuned to the equal temperament frequencies. 
This is also frequent in monophonic singing, since only a few people have absolute 
pitch. Also, non-professional singers (no matter if they have absolute pitch or not) have a 
tendency to change their tuning during longer melodies, typically downwards, as referred 
to in [Ryynänen, 2004, pp. 27].  

Some systems attend to this problem, particularly in the transcription of the singing 
voice or in the adaptation of note labeling to the intonation of the performer, e.g., 
[McNab et al., 1996b; Haus and Pollastri, 2001; Viitaniemi et al., 2003; Ryynänen, 2004]. 
Namely, Rodger McNab and colleagues [McNab et al., 1996b] devise a scheme for adjust-
ing note labeling to the own tuning of individual users. There, a constantly changing 
offset is employed, which is initially estimated by the difference between the sung tone 
and the nearest one in the equal temperament scale. Then, the resulting customized mu-
sical scale continuously alters the reference tuning, in conformity with the information 
from the previous note. This is based on the assumption that singing errors tend to ac-
cumulate over time. On the other hand, Haus and Pollastri [Haus and Pollastri, 2001] 
assume constant sized errors. There, note labeling is achieved by estimating the differ-
ence from a reference scale (the equal temperament scale in this case), then conducting 
scale adjustment and finally applying local refinement rules. 

The described approaches make sense in monophonic contexts, where we readily 
know that all the obtained notes represent the melody. Then, individual singer tuning 
can be estimated using the set of sung notes. But the same does not apply in polyphonic 
contexts, where notes from different parts are simultaneously present. In this case, slight 
departures from the equal temperament scale may occur in singing48. However, since 
many notes are present and note clustering is a complex task to accomplish (as will be 
seen in Chapter 5), it is difficult to estimate the tuning of a particular singer (or instru-

                                                        
48  This occurs, for example, in a few notes of an excerpt from Eliades Ochoa . (Table 2.1)
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ment). Therefore, we propose a different heuristic for dealing with deviations from the 
equal temperament scale, which is partly based on the assumptions that off-key instru-
mental tuning is not significant, and neither are tuning variations in singing, as the em-
ployed songs are performed by professional singers in a stable instrumental set-up.  

4.2. Pitch Trajectory Construction (PTC) 

In the identification of the notes present in a musical signal, we start by creating a set of 
pitch trajectories, formed by connecting pitch candidates with similar frequency values in 
consecutive frames. The idea is to find regions of stable pitches, which indicate the pres-
ence of musical notes. In order not to lose information on note dynamics, e.g., glissando, 
legato, vibrato or tremolo, we took special care to ensure that such behaviors were kept 
within a single track. The PTC algorithm receives as input a set of pitch candidates, 
characterized by their frequencies and saliences, and outputs a set of pitch trajectories, 
which constitute the basis of the future musical notes.  

In perceptual terms, such pitch trajectories correspond, to some extent, to the per-
ceptually atomic elements referred to in Section 2.2.2. In effect, in the earlier stages of 
sound organization, the human auditory system looks for sonic elements that are stable 
in frequency and energy over some time interval [Ellis, 1992, pp. 30]. In our work, we 
only resort to frequency information in the development of these atoms. Anyway, energy 
information could have also been incorporated for the sake of perceptual fidelity. Actu-
ally, we have exploited it to disentangle situations of peak competition among different 
tracks, but frequency information proved sufficient even in such cases. 

We follow rather closely Xavier Serra’s peak continuation mechanism ([Serra, 1989, 
pp. 61-70; Serra, 1997]). Nonetheless, since we have a limited set of pitch candidates per 
frame, our implementation becomes lighter. In fact, Serra looks for regions of stable si-
nusoids in the signal’s spectrum, which leads to a trajectory for each found harmonic 
component. In this way, a high number of trajectories have to be processed, which 
makes the algorithm a bit heavier, though the basic idea is the same. Moreover, as the 
number of pitches in each frame is small, these are clearly spaced most of the time, and 
so the ambiguities in trajectory construction are minimum. 

The main tasks carried out are described in the next paragraphs. This procedure is 
grounded on three main parameters: a maximum frequency difference between consecu-
tive frames, a maximum inactivity time in each track and a minimum trajectory duration. 

4.2.1. MIDI Quantization 

In the first step, we quantize the collected F0 candidates to their closest MIDI notes. 
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This method, which differs from continuation based on exact frequency values in the 
original algorithm, was conducted because we have experimentally found that peak con-
tinuation utilizing MIDI note numbers promotes a more robust trajectory build up, as 
will be seen. Furthermore, the representation of notes using MIDI numbers simplifies an 
eventual representation of the sound waveform in MIDI format (e.g., for generation of a 
MIDI file). Nevertheless, the initial frequency values are still kept, since they contain 
important information for the analysis of note dynamics. 

The conversion from frequency values to MIDI note numbers, fMIDI, is executed in 
this manner (4.1): 
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where fMIDI[k] represents the MIDI note number associated with frequency f in the kth 
frame and Fref is the reference frequency, which corresponds to MIDI number zero. 

4.2.2. Peak Continuation based on Frequency Proximity 

The trajectory creation scheme relies on three parameters, as mentioned. The first pa-
rameter, maxSTDist, represents the maximum frequency distance in semitones for con-
tinuing trajectories. In order not to lose information on note dynamics, we took special 
attention to guarantee that such features were kept within a single track. In addition, it is 
important to cope with frequency oscillations that might have resulted from noise and 
interference from other sources. As an example, undetected pitches (dealt with by allow-
ing a maximum inactivity time, as will be described) could give rise to abrupt frequency 
jumps in situations of high-frequency and high-amplitude vibrato, and consequent erro-
neous note segmentations. Also, situations of fast glissando, with long frequency jumps 
in consecutive frames, would not be kept within one single track.  

To this end, we defined maxSTDist as one semitone since the amount of frequency 
changing in vibrato, for both the singing voice and musical instruments, is typically 
around one semitone49 [Handel, 1989, pp. 177]. In practice, separations of almost 2 
semitones are permitted, due the fact that continuation uses MIDI numbers. Exemplify-
ing, in a trajectory whose last note is MIDI 70, and having a continuation candidate with 
note number 71, if the respective original frequency values correspond to the lower limit 
of note 70 and to the upper limit of note 71, a difference close to two semitones results. 

 
49  Naturally, this value may vary significantly. For example, the vibrato of lyric singers may reach much 

broader pitch variations (e.g., three semitones in the opera excerpt illustrated in Figure 3.16). As for 
the frequency of vibrato, typical values are close to 6 Hz [Handel, 1989, pp. 177]. 
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This proved to be more robust than calculating the distance employing the initial fre-
quencies.  

In this way, the described dynamical features are satisfactorily kept within a common 
track, instead of being separated into a number of different trajectories, e.g., one trajec-
tory for each note that a glissando may traverse. Hence, a single trajectory may contain 
more than one note and, therefore, trajectory segmentation based on frequency varia-
tions is carried out in the next stage of the melody detection algorithm. 

To be more precise, even if a low frequency distance were imposed, some trajectories 
could contain more than one note, because of smooth transitions between notes, e.g., in 
legato performances. To cope with this situation, some authors (e.g., [Eggink and Brown, 
2004]) compare the maximum allowed distance to the frequency average of the last few 
frames. However, as discussed in Section 4.1.2, it is not assured that individual tracks 
will contain only one note. Also, this strategy is not robust to missing pitches in tracks 
with vibrato, which could cause abrupt frequency jumps. 

4.2.3. Track Inactivity 

One important aspect to consider in any pitch tracking methodology is that pitches 
might pass undetected in some frames as a result of noise, masking from other sources or 
low peak amplitude.  

For this reason, permitting a trajectory to “sleep” for a while and “wake up” when its 
pitch reappears can be regarded as simple implementation of the Gestalt principle of 
continuity, described in Section 2.2.2. To illustrate, if a note played by a flute is masked 
by a loud event, such as a drum, which occurs more or less in the middle of the note, the 
auditory system will typically “hear through” the drum sound and assume that the note 
was there when the drum was hit, in spite of not explicitly detecting it. This is true as 
long as the approximate frequency content of the note is kept. 

Thus, the second parameter, maxSleepLen, specifies the maximum time where a tra-
jectory can be inactive, i.e., when no continuation peaks are found. If this number is 
exceeded, the trajectory is stopped. A maximum of 62.5 msec was defined (correspond-
ing to 11 frames, which, in practice leads to 63.9 msec). For inactive frames, both the 
frequency and salience values are set to zero. As a result, many sparse trajectories arise 
(most of them relating to weak notes), which might still be part of the melody. 

Though this value may seem too high, it was intentionally selected. Indeed, lower 
maximum inactivity times usually give rise to a profusion of short trajectories at the same 
MIDI number. This is due to the fact that, in polyphonic signals, pitch masking occurs 
more notoriously than in monophonic audio. Therefore, these should be merged later 
on. On the contrary, admitting a longer maximum inactivity time has the drawback that 
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consecutive notes at the same pitch may be kept within only one track. To this end, tra-
jectory segmentation, now based on salience variations, must be performed.  

The reason why we prefer the “track splitting” over the “track merging” paradigm is 
that, even with a perfect pitch detector, consecutive notes at the same pitch might be 
integrated into one single track, e.g., when notes are played legato. The energy decreases 
but no silence actually occurs and so track splitting had to be conducted anyway. 

4.2.4. Tackling Ambiguities 

In general, the pitches selected in each frame are clearly spaced, as a consequence of ac-
cepting only a small number of them in the AMPD. Hence, the peak continuation pro-
cedure is usually unequivocal. However, some ambiguities may occur mostly in situations 
where close peaks are selected. In reality, owing to the allowance of a wider maximum 
frequency difference, close frequency peaks may compete and induce ambiguous 
continuations that might possibly end up in trajectory construction errors.  

In this way, we extended the algorithm by introducing a look-ahead scheme to pre-
vent trajectories from continuing pitch candidates that would give rise to erroneous con-
tinuations in future frames.  

a) Trajectory construction without look-ahead

70 70 70 70 70 71 71 71 71 71 71 71 71 71 71
70 70 70 70 70 70 70 70 70 70 70

i j

b) Trajectory construction using look-ahead

70 70 70 70 70 x x x x 70 70 70 70 70 70 70 70 70 70 70
71 71 71 71 71 71 71 71 71 71

i j

 

Figure 4.1. Look-ahead procedure. 

Exemplifying, imagine that the last MIDI note number of a given track is 70 and 
that we had continued it with a pitch candidate with number 71, at frame i (Figure 4.1a). 
Then, a few frames ahead (i.e., less than maxSleepLen frames), in frame j, we had found 
both notes 70 and 71. In this situation, that trajectory would have erroneously contin-
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ued note number 71 instead of note 70. Indeed, since the same MIDI number is present 
ahead, it would have been wiser not to continue the candidate note 71 and sleep for a 
while until the correct note was found. Note 71 would then have been used to continue 
or create another trajectory. Therefore, when noisy peaks are detected in the neighbor-
hood of true peaks, a more reliably assignment of pitch candidates to tracks usually re-
sults. This is illustrated in Figure 4.1b. 

4.2.5. Elimination of Short Tracks 

The last parameter, minTrajLen, controls the minimum trajectory duration. Here, all fin-
ished tracks that are shorter then this threshold, defined as 125 msec (22 frames, leading 
in reality to 127.7 msec), are eliminated. This parameter was set in conformity with the 
typical note durations in Western music. As Bregman points out, “Western music tends 
to have notes that are rarely shorter than 150 msec in duration. Those that form melodic 
themes fall in the range of 150 to 900 msec. Notes shorter than this tend to stay close to 
their neighbors in frequency and are used to create a sort of ornamental effect” 
[Bregman, 1990, pp. 462].  

4.2.6. Reassignment of Unused Pitch Candidates 

Another extension of the original peak continuation algorithm consisted of reducing 
pitch track sparseness. In fact, due to the allowed sleeping time, trajectories may have a 
variable number of empty frames.  

To this end, pitch candidates in rejected tracks are used to fill in the blanks in other 
trajectories. For example, in Figure 4.1, if the trajectory with MIDI note number 71 was 
eliminated, its values from frame i to frame j-1 would be used to fill in the empty frames 
of the other track, giving that the restriction for maximum semitone difference was ful-
filled. Furthermore, the deleted track might had been used to either anticipate the be-
ginning or postpone the end of the other trajectory, as long as the maximum semitone 
distance was satisfied. As a result, phenomena such as frequency drifting at the attack 
and decay regions of musical notes are kept within a single track, instead of being split 
apart. This in turn promotes more accurate note timings. 

4.2.7. Putting It All Together 

This algorithm is graphically illustrated in Figure 4.2 (adapted from [Martins, 2001, pp. 
43]). There, black squares represent the candidate pitches in the current frame n. Black 
circles connected by thin continuous lines indicate trajectories that have not been fin-
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ished yet. Dashed lines denote peak continuation through sleeping frames. Black circles 
connected by bold lines stand for validated trajectories, whereas white circles represent 
eliminated trajectories. Finally, gray boxes indicate the maximum allowed frequency dis-
tance for peak continuation in the corresponding frame. 
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Figure 4.2. PTC algorithm. 

Algorithm 4.1 summarizes the operations carried out for pitch trajectory construc-
tion. Parameter definition is presented in Table 4.1.  

The results of the process for the simple saxophone riff example we used before are 
presented in Figure 4.3 (page 126). There, we can see that some of the obtained trajecto-
ries comprise glissando regions. Also, some of the trajectories include more than one 
note and should, thus, be segmented. 

Algorithm 4.1. Pitch trajectory construction. 

1. Quantize frequencies to the closest MIDI note numbers (but 

keep original frequency values – Equation (4.1)). 

2. Create initial trajectories: 

2.1. Use MIDI note numbers, frequencies and saliences of the 

pitch candidates in the first non-empty frame. 

3. Perform peak continuation, i.e., for all frames: 

3.1. Get the note numbers of all pitch candidates in the cur-

rent frame. 

3.2. Define all the continuation possibilities for each 
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non-finished track, i.e., note numbers in the current 

frame that are within the maxSTDist range. 

3.3. Assign new continuation note numbers to each 

non-finished track, i.e., for all non-finished tracks: 

3.3.1. Select the best MIDI candidate for continuation, 

i.e., the closest one that does not have any 

other closer trajectories: 

- If the selected note number is different from 

the last one, handle continuation ambiguities 

via the look-ahead procedure (Figure 4.1). 

- In case of tie, compare exact frequency dis-

tances rather than MIDI number differences. 

3.3.2. If the trajectory is continued: 

a) Update the trajectory length. 

b) Add the current note number, frequency and sa-

lience to it. 

3.3.3. Otherwise: 

a) Increment the number of inactive frames,  

numSleep. 

b) If numSleep ≥ maxSleepLen, stop the current 

trajectory. 

3.4. Eliminate or validate the stopped trajectories, i.e., 

for all stopped trajectories: 

3.4.1. If length < minTrajLen: 

a) Eliminate the current trajectory. 

b) Use its pitch candidates to fill in the empty 

frames in one non-finished trajectory (the 

first one found whose MIDI note numbers are in 

the maxSTDist range) or to pad its content to 

the onset and/or ending of the found track. 

3.5. Create new tracks, i.e., for all non-continued pitch 

candidates: 

3.5.1. Create a new trajectory, initialized with the 

present note number, frequency and salience. 

4. Return all finished trajectories (in ascending start frame or-

der). 
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Parameter Name Parameter Value 

maxSTDist 1 semitone 

maxSleepLen  62.5 msec (11 frames  63.9 msec) 

minTrajLen 125 msec (22 frames  127.7 msec) 

Table 4.1. PTC parameters. 
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Figure 4.3. Results of the PTC algorithm. 

4.3. Frequency-Based Track Segmentation 

The trajectories that result from the PTC algorithm may contain more than one note 
and, therefore, must be divided in time. In frequency-based track segmentation, the goal 
is to split notes of different pitches that may be present in the same trajectory, coping 
with glissando, legato, vibrato and other sorts of frequency modulation.  

4.3.1. Note Segmentation 

The main issue with frequency-based segmentation is to approximate the frequency curve 
by piecewise-constant functions (PCFs), as a basis for the definition of MIDI notes. 
However, this is often a complex task, since musical notes, besides containing regions of 
nearly stable frequency, also comprise regions of transition, where frequency evolves un-
til (pseudo-)stability, e.g., glissando. Additionally, frequency modulation may also occur, 
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where no stable frequency exists. Yet, an average stable fundamental frequency can be 
determined. 

Our problem could thus be characterized as one of finding a set of piece-
wise-constant/linear functions that best fits to the original frequency curve, under the 
constraint that it encloses the F0s of musical notes. As unknown variables, we have the 
number of functions, their respective parameters (slope and bias - null slope if PCFs are 
used), and start and endpoints.  

We have investigated some methodologies for piecewise-linear function approxima-
tion. Two main paradigms are defined: “characteristic points” (CPs) and “minimum er-
ror” (ME). Algorithms based on CPs do not suit well our needs, e.g., in the case of fre-
quency modulation, and so we constrained the analysis to the ME paradigm. This one 
can be further categorized into two main classes [Pérez and Vidal, 1992]. In the first one, 
an upper bound for the global error is specified and the minimum number of functions 
that satisfies it, and respective parameters, is computed. This situation poses some diffi-
culties, mostly associated with the definition of the maximum allowed error. In effect, an 
inadequate definition may lead to a profusion of PCFs in regions of vibrato. In the sec-
ond (less studied) class, a maximum number of functions is specified, and optimization is 
conducted with the objective of minimizing the global fitting error. However, these ap-
proaches either require that an analytic expression of the curve be known, or need to test 
different values for the number of functions. Hence, methods in this class do not seem 
to suit our needs either. 

In this way, we propose an approach for the approximation of frequency curves by 
PCFs, taking advantage of some peculiarities of musical signals.  

A. Filtering of the Original Frequency Curve 

The algorithm starts by filtering the frequency curves of all tracks, in order to fill in 
missing frequency values that result from the PTC stage. This is carried out by a simple 
zero-order-hold (ZOH), as in (4.2). There, f[k] is the frequency value in the current track 
for its kth frame and fF[k] denotes the filtered curve. 
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B. Definition of Initial PCFs 

Next, the filtered frequency curve is approximated by PCFs through the quantization 
of each frequency value to the corresponding MIDI note number, according to (4.1). 
Therefore, PCFs can be directly defined as sequences of constant MIDI numbers, as in 
(4.3). There, PCi represents the ith PCF, defined in the domain Di and characterized by a 
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sequence of constant MIDI numbers equal to ci. Also, the particular case of singleton 
domains is considered. The total number of PCFs is denoted by nPC. 
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C. Filtering of PCFs 

However, because of frequency variations resulting from modulation or jitter, as well 
as frequency errors from the pitch detection stage, fluctuations of MIDI note numbers 
may occur. Also, glissando transitions are not properly kept within one single function. 
Consequently, fMIDI[k] must be filtered so as to allow for a more robust determination of 
PCFs that may represent actual musical notes. Four stages of filtering are applied with 
the purpose of dealing with short PCFs, i.e., PCFs whose length is below minNoteLen 
(equal to minTrajLen, i.e., 22 frames = 127.7 msec), where the length of a function is the 
number of elements in its domain. 

The initial filtering stages recur to the presence of long PCFs (having lengths above 
minNoteLen), which provide good hints for function merging. 

Oscillation Filtering 

For this reason, in the first filtering stage, sequences of PCFs with alternating values 
are detected and merged (i.e., sequences of PCFs with MIDI note numbers c and c+1, or 
c+1 and c). Such oscillations can be combined in a more robust way in case they are 
delimited by long PCFs. The general methodology proceeds like thi

1. We start by looking for a long PCF; 

2. Next, we search for functions with alternating MIDI numbers until another long 
PCF is found again;  

3. The detected oscillations indicate regions of frequency modulation and, there-
fore, the respective PCFs are fused as follows:  

a) If the delimiting functions have the same MIDI number, that the resulting 
PCF receives this value; 

b) On the other hand, if the last function has a different MIDI number, it is 
not obvious which pitch should be assigned. Hence, we sum the durations of 
the short PCFs in between for each of the two possible MIDI note numbers 
and select the winner as the most frequent one. In order to account for 
empty frames in the pitch track under analysis, only non-empty frames are 
used when counting the occurrences of each MIDI note number;  
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c) The alternating short PCFs are then combined with the corresponding ini-
tial long PCF.  

 

This procedure is illustrated in Figure 4.4, where the thick lines denote long PCFs 
and thin ones represent short functions. 

b) Filtered PCFs

a) Original PCFs

 

Figure 4.4. Oscillation filtering. 

Filtering of Delimited Sequences 

In the second stage, the goal is to combine short PCFs that are delimited by two 
PCFs with the same note number (one of them must be long). This may occur due to 
pitch jitter from noise, pitch detection errors or tuning issues. Such “enclosed” functions 
are handled in this fashion: 

b) Filtered PCFs

a) Original PCFs

 

Figure 4.5. Filtering of delimited sequences. 
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1. Once again, we start by looking for a long PCF; 

2. Then, we search forward for another PCF with the same MIDI number; 

3. If the sum of the durations of all the PCFs in between is short, those functions 
and the delimiting ones are merged; 

4. We then repeat from step 2, but now to the left of the long PCF found.  

 

This is exemplified in Figure 4.5. 

Glissando Filtering 

Next, sequences representing glissando are analyzed as described below (and illus-
trated in Figure 4.6): 

1. As before, we first look for a long PCF; 

2. After that, we search for a succession of short PCFs with constantly increasing 
or decreasing MIDI numbers (corresponding to the transition region) and pos-
sibly ending with a long PCF; 

3. The detected transition region suggests a possible glissando, treated as follows: 

a) If the final PCF in the sequence is long, the merged PCF maintains its value, 
based on the evidence that the glissando evolved until the long function; 

b) Otherwise, if the sequence contains only short PCFs and if the duration of 
the whole sequence is long enough to form a note, the fused PCF receives 
the value of the most frequent MIDI note number (the last PCF may result 
from frequency drifting at the ending, and so it does not obtain preference). 

 

a) Original PCFs

b) Filtered PCFs

 

Figure 4.6. Glissando filtering. 
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Filtering without the Requirement of Finding Long PCFs 

After making use of long PCFs for filtering, a few short PCFs may still be present, as 
can be seen in Figure 4.6. Therefore, two final stages of filtering are applied, much in the 
same way as filtering of glissando and of delimited sequences was performed, with the 
difference that no long PCFs need to be found.  

In this way, filtering of delimited sequences is first conducted, where we search for a 
short PCF and then for another PCF after it with equal note number, complying with 
the procedure described at the top of page 130. Step 1 is executed differently, since short 
PCFs are now looked for.  

As for glissando filtering, we look for sequences indicating glissando transitions (as 
defined on page 130) starting with short PCFs, and proceeding like this: 

1. If the final PCF in the sequence is long, the new PCF keeps its value, as before;  

2. Otherwise, if the sequence is long enough to form a note, the new PCF receives 
the value of the most frequent MIDI note number, also as before; 

3. Otherwise, the last MIDI number may correspond to frequency drifting at the 
decay region. Thus, the sequence of PCFs is merged with the immediately 
precedent long PCF.  

 

Final short note filtering is illustrated in Figure 4.7. 

a) Original PCFs

b) Filtered PCFs

glissando

delimited

glissando

 

Figure 4.7. Final short note filtering. 

D. Time Adjustment 

After filtering, the precise timings of each PCF must be adjusted. Indeed, as a con-
sequence of MIDI quantization, the exact moment where transitions start is often de-
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layed, since the frequencies at the beginning of transitions may be converted into the 
previous MIDI number, instead of to the next MIDI number.  

Hence, we define the start of the transition as the point of maximum derivative of 
f[k] after it starts to move towards the following note, i.e., the point of maximum deriva-
tive after the last occurrence of the median value.  

The median, mdi, is calculated only for non-empty frames (zero frequency) whose 
original MIDI note numbers are kept after filtering, according to (4.4). In this way, the 
median is obtained in a more robust way, since possibly noisy frames are not considered. 

[ ]( ) [ ] [ ]∈ = ≠= ∀ : andmedian ,
i MIDI ii k D f k c f kmd f k 0  (4.4) 

The discrete derivative is computed using the filtered frequency curve, as in (4.5): 

[ ] [ ] [ ]= − −1F Ff k f k f k  (4.5) 

4.3.2. Note Labeling 

Once pitch tracks are segmented into regions of different pitch, we have to assign a final 
MIDI note number to each of the defined PCFs. 

Accurate note labeling of singing voice excerpts is usually not trivial because of the 
enriched dynamics added by many singers. Moreover, human performances are often 
unstable (e.g., tuning variations) and affected by errors (e.g., pitch singing errors). These 
difficulties are not so severe in our circumstances, since we employ recordings of profes-
sional singers in stable instrumental set-ups. Therefore, we assume that singing tuning 
variations are minimum and that the instrumental tuning does not depart significantly 
from the reference equal temperament scale. 

In order to increase the robustness of the assignment procedure, we deal with am-
biguous situations where it is not obvious which the correct MIDI number should be. 
This happens, for instance, when the median frequency is close to the frequency border 
of two MIDI notes, as in recordings where tuning variations in singing occur (e.g., our 
Eliades Ochoa’s excerpt) or when instruments are tuned off-key. 

A. Definition of the Initial MIDI Note Number and the Allowed Frequency Range 

Thus, we determine the initial MIDI note number from the median frequency, mdi, 
of each function, according to (4.1). Then, we calculate the ETF associated with the ob-
tained MIDI number, by inverting (4.1). This is carried out with the purpose of checking 
if the median does not deviate excessively from the reference frequency. Here, we define 
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a maximum distance, maxCentsDist, of 30 cents, as in (4.6):  

( )
( )
max max

1200 1200
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2 ; 2
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i i

i i

i i i

iniMIDI md

refF iniMIDI

range refF refF−

=

=

 = ⋅ ⋅ 

 (4.6) 

There, iniMIDIi represents the candidate MIDI number of the ith PCF, refFi stands 
for the corresponding ETF, rangei denotes the allowed frequency range and ‘frequency’ is 
a function for figuring out the ETF from a MIDI note number (i.e., inversion of the 
‘MIDI’ function, defined in (4.1), disregarding the rounding operator). 

B. Determination of the Final MIDI Note Number: Tuning Compensation 

Consequently, if the median is in the permitted frequency range of the respective 
MIDI number, there is evidence that the assigned MIDI number is correct, and so we 
keep it. 

However, when the median deviates significantly from the reference, it is not clear 
whether the initial MIDI number is correct or not. In order to clarify this ambiguity, we 
use a simple heuristic for the determination of the final MIDI number. Basically, if the 
median is higher than the upper range limit, the final MIDI number may need to be 
incremented50. This is conducted using the following scheme: 

1. We first calculate the frequency value in the frontier of the two candidate MIDI 
numbers, borderFi, which is 50 cents above the reference frequency of the initial 
MIDI note number, (4.7):  

= ⋅
50

12002i iborderF refF  (4.7) 

2. Next, we count i) the number of frames, numH, for which the frequency is above 
the frontier, i.e., the number of frequency values corresponding to the incre-
mented MIDI number and ii) the number of frames, numL, where the frequency 
is below the median. Then: 

a) If numH > numL, we conclude that the final MIDI number should be 
changed to the incremented value; 

b) Otherwise, it is left unchanged.  

                                                        
50  We describe the analysis carried out using as example the upper range. In any case, we proceed like-

wise if the median is below the lower range limit, except that in this case the note number might 
need to be decremented. 
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4.3.3. Merging of Simultaneous PCFs with Equal MIDI Note Numbers 

Finally, in case PCFs that are simultaneous in time receive the same MIDI note 
number, these are merged together into one single PCF, beginning with the PCF that 
starts earliest and ending with the last one to finish.  

In order to assign frequency and pitch salience values to the frames in the common 
time intervals, we select, in each frame, the frequency (and respective pitch salience) that 
is closest to the ETF of the obtained MIDI note number.  

Anyway, this situation rarely happens since, as referred to in Section 4.2.4, the tra-
jectory construction scheme does not entail many ambiguities due to the relative dis-
tance between the detected peaks. 

4.3.4. Putting It All Together 

The description of frequency-based segmentation is condensed in Algorithm 4.2. Pa-
rameter definition is presented in Table 4.2. 

Algorithm 4.2. Frequency-based track segmentation. 

1. Apply ZOH to the original frequency curve, f (Equation (4.2)). 

2. Define initial PCFs: 

2.1. Quantize the filtered curve, f
F
, to the corresponding 

MIDI note number (Equation (4.3)). 

3. Filter the set of initial PCFs: 

3.1. Perform oscillation filtering, based on the detection of 

long PCFs (Figure 4.4). 

3.2. Implement filtering of delimited sequences, resorting to 

the detection of long PCFs (Figure 4.5). 

3.3. Perform glissando filtering, based on the detection of 

long PCFs (Figure 4.6). 

3.4. Execute the same kind of filtering without the require-

ment of finding long PCFs (Figure 4.7): 

3.4.1. Implement filtering of delimited sequences. 

3.4.2. Perform glissando filtering.  

4. Adjust the timings for each PCF, according to the point of 

maximum derivative of the frequency curve. 
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5. Assign a MIDI note number to each PCF: 

5.1. Compute the initial MIDI number as the one corresponding 

to the median frequency mdi (Equation (4.4)) 

5.4. Determine the final MIDI note number, taking into con-

sideration tuning compensation. 

6. Merge PCFs that are simultaneous in time and have received the 

same MIDI note number. 

7. Return the resulting notes. 

 

Parameter Name Parameter Value 

minNoteLen 125 ms (22 frames  127.7 msec) 

maxCentsDist 30 

Table 4.2. Parameters for frequency-based track segmentation. 
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Figure 4.8. Results of the frequency-based track segmentation algorithm. 
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The results of this algorithm are illustrated in Figure 4.8, for a pitch track from Eli-
ades Ochoa’s “Chan Chan” and the female opera excerpt presented in Table 2.1. There, 
dots denote the F0 sequence under analysis, gray lines are the reference segmentations, 
dashed lines denote the results attained prior to time correction and final note labeling 
and solid lines stand for the final achieved results. It can be seen that the segmentation 
methodology works quite well in these examples, despite some minor timing errors that 
may have even derived from annotation inaccuracies. The results for the sketched opera 
track, where strong vibrato is present, are particularly satisfactory. 

4.4. Salience-Based Track Segmentation 

As for salience-based track segmentation, the objective is to separate consecutive notes at 
the same pitch, which the PTC algorithm may have interpreted as forming one single 
note. This requires segmentation based on pitch salience minima, which mark the limits 
of each note. In fact, the salience value depends on the evidence of pitch, which is corre-
lated (though not exactly equal) to the energy of the F0 under consideration. Conse-
quently, the envelope of the salience sequence is similar to an amplitude envelope: it 
grows at note attack, has then a more steady region and decreases at the decay. Thus, 
notes can be segmented by detecting clear minima in the pitch salience sequence51.  

4.4.1. Candidate Segmentation Points 

In a first attempt towards salience-based segmentation, we developed a prominent valley 
detection method for determining salient minima corresponding to candidate segmenta-
tion points. 

A. Filtering of the Original Salience Curve 

As in the frequency-based segmentation stage, we start by filtering the salience se-
quence with a ZOH, due to missing values.  

B. Looking for Clear Salience Minima 

After ZOH filtering, we iteratively look for all clear local minima of the filtered sali-
ence sequence, sF[k], i.e., sufficiently prominent minima (as defined below). This is car-

                                                        
51  A pitch salience sequence is formed by the succession of pitch saliences in the frames of a given pitch 

track. This should not be confused with the pitch salience curve defined in Section 3.3.3 as a sum-
mary ACF for pitch detection. 
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ried out in this manner: 

1. First, all local minima and maxima are found, coping with plateaus. In these 
situations, the indexes of the corresponding minima/maxima are assigned to the 
middle of the plateau; 

2. Then, only deep enough minima are selected. This is accomplished in the fol-
lowing recursive procedure: 

a) The global minimum of sF[k] is found; 

b) Next, the set of all local maxima is divided into two subsets, one to the left 
and another one to the right of the global minimum; 

c) The global maximum for each subset is then determined; 

3. The global minimum is selected as a clear minima if its prominence, i.e., the dif-
ference between its amplitude and that of both the left and right global maxima, 
is above the defined minimum peak-valley distance, minPvd; 

4. Finally, the set of all local minima is also divided into two new intervals, to the 
left and to the right of the global minimum.  

5. The described operations are then recursively repeated for each of the new sub-
sets until all deep minima and respective prominences are found.  

C. Remarks on the Detection of Candidate Segmentation Points  

One difficulty of the proposed scheme is its lack of robustness. In effect, the best 
value for minPvd was found to vary from track to track, along different song excerpts. 
Indeed, a unique value for that parameter leads to both missing and extra segmentation 
points. Also, it is sometimes difficult to distinguish between note endings and amplitude 
modulation in some performances.  

Therefore, we improved our method by implementing note onset detection directly 
on the audio signal and matching the obtained onsets with the candidate segmentation 
points that resulted from the detection of prominent valleys.  

In this way, minPvd should receive a low value so that missing segmentation points 
are unlikely. In addition, this parameter ought to be adaptive in order to cope with dif-
ferences in salience ranges across different notes. Hence, minPvd was set to 10% of the 
maximum amplitude range of the salience sequence under consideration (whose values 
belong to the [0; 100], after the normalization conducted in the pitch detection stage). 
Due to the defined low value, extra false segmentation points occur, which are elimi-
nated later on via onset matching. Moreover, as a consequence of employing a low 
threshold, the encountered minima are not that “clear” any longer. 

Figure 4.9 illustrates the algorithm for detection of candidate segmentation points. 
There, the pitch salience sequence of a trajectory from Claudio Roditi’s performance of 
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“Rua Dona Margarida” is depicted, where ‘o’ represent correct segmentation candidates 
and ‘*’ denote extra segmentation points.  
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Figure 4.9. Results of salience-based track segmentation: initial candidate points. 

4.4.2. Onset Detection 

The objective of onset detectors is to accurately locate the beginnings of musical notes in 
acoustic signals. Humans perceive onsets as a consequence of noticeable changes in the 
intensity, pitch or timbre of a sound [Klapuri, 1999].  

Robust onset detection is a demanding task, even for monophonic recordings. For 
example, most methodologies that rely on variations of the amplitude envelope behave 
satisfactorily for sounds with sharp attacks, e.g., percussion or plucked guitar strings, but 
show some difficulties when notes are played with little amplitude inflection, for exam-
ple, in glissando or in intentionally smooth attacks, e.g., bowed violin strings. The prob-
lem is all the more acute in polyphonic mixtures, where energy bursts from the attacks of 
different notes overlap in time. 

A substantial amount of research related to onset detection has been recently con-
ducted. This constitutes a research topic of its own and for this reason a detailed study of 
the subject is out of the scope of our work. On the contrary, we used the pragmatic strat-
egy of basing our efforts on state-of-the-art techniques. For an overview of the area see, 
e.g., [Bello et al., 2005; Klapuri, 1999].  

The algorithm implemented in our system is largely based on [Klapuri, 1999], with 
some adaptations. His approach shows some similarities with parts of Eric Scheirer’s 
mechanism for tempo and beat analysis [Scheirer, 1998], from which we have also bor-
rowed a few elements. 
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A. Band-Pass Filtering 

The central idea is to perform onset detection in a band-wise manner. A bank of 
nearly critical band filters is chosen, covering the frequencies from 44 Hz to the Nyquist 
frequency. For a sampling frequency fs = 22050 Hz, 20 filters result, where the first one is 
low-pass, the last one is high-pass and the remaining are band-pass.  

Elliptic filters are employed, in order to ensure a maximally sharp cutoff in the tran-
sition band, as proposed in [Scheirer, 1998]. Since it is important to maintain the tem-
poral properties of the signal in each band, we imposed zero-phase as a requirement. 
Thus, bi-directional filtering [Smith, 1997, pp. 330] is carried out as in (4.8): 

( ) ( ) ( ) ( )−= 1* *i i
BS z S z H z H zi  (4.8) 

There,  represents the filtered output at band i,( )i
BS z ( )i zH  denotes the filter dis-

crete transfer function at the same band and ( )S z  represents the original signal, all in 
the Z-domain. As a consequence of bi-directional filtering, and according to the desired 
final transfer function, we specified the following filter parameters: 3rd order filters, with 
1.5 dB ripple in the pass-band and 20 dB of rejection in the stop-band. The design pa-
rameters are (roughly) doubled because of bi-directional filtering, e.g., 6th order filters 
result, in conformity with the definitions in [Scheirer, 1998]. As for the cutoff frequen-
cies, the three lowest filters are one-octave wide BPFs, whereas the remaining are 
third-octave wide BPFs, with no band overlapping. 

B. Determination of Energy Variations in Each Band  

After filtering, the objective is to compute the energy variations in each band, as a 
basis for the detection of onset components. To this end, the amplitude envelope in 
each band is first extracted via rectify-and-smooth. This is accomplished like this: 

1. The output of each band is first decimated to 200 Hz, so as to make calculations 
easier; 

2. Then, the decimated outputs of each band are full-wave rectified and smoothed 
with a 100 msec half-Hanning window, as in (4.9):  
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There, w[n] denotes the half-Hanning window and [ ]ksiH represents the 
smoothed output at band i. This window approximates reasonably well the en-
ergy integration performed by the human auditory system [Scheirer, 1998]. 
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Again, we guarantee zero output delay by shifting the window; 

3. Next, information about energy variations in each band is achieved by comput-
ing the first-order derivatives, [ ],i

Hs k  of the amplitude envelopes, [ ]i
Hs k . 

4. Finally, the derivative curve in each band is half-wave rectified, since we are only 
interested in the points of positive energy variations. 

C. Integration of the Information in All Bands and Onset Detection 

The collected information is then integrated across all bands and then onsets are de-
tected in this fashion: 

1. First, we linearly sum the calculated derivatives and look for noticeable maxima 
in the summed derivative. This is executed much in the same way as in the pre-
vious procedure for detection of clear minima, except that now we search for 
peaks instead of valleys; 

2. The summed derivative curve is then normalized to the [0; 1] interval; 

3. After that, we select initial onset candidates by finding all peaks whose saliences 
are above minPeakSal = 0.05; 

4. We then delete components that are closer than minOnsetDiff = 50 msec to a 
more intense component, since some peak neighborhoods may be very dense, 
[Klapuri, 1999]; 

5. Finally, clear onsets, i.e., onsets with amplitudes above clearOnsetMag = 0.4, are 
selected. 

D. Illustration and Remarks on the Onset Detection Approach 

The results of onset detection are illustrated in Figure 4.10, for Claudio Roditi’s ex-
cerpt. There, the onset salience curve is depicted and the identified onsets are circled. 
Dashed vertical lines denote the manually annotated onset times of the melody notes. As 
can be seen, there is almost a perfect match between the annotated and the obtained 
onset times. However, several false negatives appear, e.g., around 1.62 and 1.87 sec, since 
the respective peak amplitudes are excessively low. Nevertheless, even in those situations 
the annotated onsets match very well the observed peaks.  

The previous example was particularly simple, since there are only two simultaneous 
voices plus percussion. Moreover, the two parts have synchronous onset times. The main 
difficulty comes from a few notes played legato, which give rise to a decrease in onset 
sharpness and its consequent undetection. In more complicated examples, several false 
positives result, which correspond to the onset times of notes from other voices apart 
from the melody, as well as from percussion beats and noise.  
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Figure 4.10. Results of onset detection. 

In [Klapuri, 1999], a relative derivative function (RDF) was used instead of the 
first-order derivative (FOD). The RDF is computed by dividing the FOD by the ampli-
tude envelope. The idea is to deal with the fact that some sounds, especially the ones 
with slow attacks, may take some time to reach the point where the amplitude is maxi-
mally rising. In those situations, the measured onset time is delayed, in comparison to 
the physical one. Also, the amplitude during note attack is not strictly monotonically 
increasing, which would lead to several local maxima in the first-order derivative. How-
ever, after experimental testing, some problems were encountered. Namely, in our saxo-
phone riff, the determined onsets occurred ahead of time, as depicted in Figure 4.11. 
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Figure 4.11. Comparison of onset results using the RDF and FOD functions. 

In the previous figure, the original waveform is represented by the curve with nega-
tive values, the dashed line stands for the onset salience curve from the RDF, the solid 
line denotes the onset salience curve based on the FOD and the straight vertical lines 
denote the acquired onset times from the FOD. There, it can be seen that the peaks of 
the onset salience curve obtained from the RDF occur much too early. This seems to be 
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a side-effect of breathing noise before the attacks of the notes. We evaluated the two ap-
proaches in our database and best results were achieved with the first-order derivative.  

Another difference from the method in [Klapuri, 1999] is that, there, algorithm on-
set components were detected in each band before integration, whereas in our imple-
mentation, integration is performed before the detection of onset components. No sub-
stantial accuracy differences were observed and early integration was lighter in computa-
tional terms. 

Also, the threshold for onset definition was originally psychoacoustically-inspired. 
Our implementation is less robust in this respect, but it is simpler. 

4.4.3. Validation of Candidate Segmentation Points 

After onset detection, our goal is to validate the previously obtained candidate seg-
mentation points. This strategy has some similarities with Kashino’s beat and terminal 
point integration [Kashino et al., 1995]. The main difference is that, there, beats are used 
in the definition of global processing scopes, rather than note onsets. However, if only 
the main beats are used, consecutive notes at the same pitch coming out during the in-
terval between two beats may pass undivided. Also, beats occurring in the middle of a 
note may induce inadvertent segmentations.  

A. Onset Matching 

Hence, onset matching is carried out for all candidate segmentation points. Namely, 
if a candidate valley is close to an identified onset, i.e., they are separated by less than 
maxValleyOnsetDiff = 20 msec, that valley is defined as an actual segmentation point. 

B. Note Segmentation and Time Correction 

Next, the collected segmentation points are used to further split the notes that re-
sulted from the frequency-based segmentation stage. Here, the determined points are 
adjusted to the locations of the detected onsets. 

Moreover, the starting times of the notes are also adjusted when onsets are found 
close to the original note beginnings (with a maximum maxValleyOnsetDiff distance, and 
occurring before the start of the note). This copes to some extent with the problem of 
noisy attack transients, where the pitch may oscillate significantly. In such cases, the 
track receives no F0s from the note attack region, causing late note beginnings.  

Onsets located after the original note beginnings are not taken into consideration 
since this would give rise to note shortening, which, if inadvertently performed, is not 
recoverable later on. On the contrary, too long notes may be corrected in the melody 
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extraction stage, when note truncation is applied, as will be seen in Section 5.3.2. 

C. Illustration and Remarks on the Validation Approach 

The results of salience-based segmentation for an excerpt from Claudio Roditi’s 
“Rua Dona Margarida” are illustrated in Figure 4.12. Gray horizontal lines represent 
annotated notes, whereas black lines stand for the extracted notes. The small gray verti-
cal lines denote the desired segmentations and the black vertical ones represent the ob-
tained segmentation points.  
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Figure 4.12. Results of the salience-based track segmentation algorithm. 

It can be seen that the detected segmentation points match almost perfectly the an-
notated ones. However, four true segmentations are missing. Ideally, our method would 
catch such absent points if perfect onset detection were achieved. As this is not the case, 
“clear” segmentation points without matching onsets are erroneously left out. 

In order to improve the results, we chose to redo salience-based segmentation after 
melody identification (described in Chapter 5), with a different set of restrictions. Thus, 
“clear” segmentation points (quantitatively defined in the next subsection) are selected 
no matter if no corresponding onsets are found. The reason why we did not proceed in 
this way at this stage was motivated by the fact that excessive segmentation decreases the 
global melody detection accuracy (due to the decision-making mechanisms involved in 
the resolution of note overlapping, in Section 5.3). On the other hand, postponing un-
clear segmentation cases to the end of the chain improves segmentation results, while 
keeping overall melody accuracy, which was experimentally confirmed. 

4.4.4. Segmentation after Melody Identification 

We repeated salience-based segmentation after melody identification, where we accepted 
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all clear minima in the salience sequence as valid segmentation points, i.e., valleys whose 
prominences are above clearValleyProm = 35 (recall the normalization to the [0; 100] in-
terval, in the pitch detection stage). The attained results are presented in Figure 4.13.  
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Figure 4.13. Results of the salience-based track segmentation algorithm: acceptance of 
clear salience minima. 

It can be seen that there is an almost perfect match when this solution is followed. 
However, in some excerpts excessive segmentation occurs, especially when significant 
amplitude modulation is present. A solution to this problem would require more robust 
onset detectors in polyphonic contexts. Anyway, by resynthesizing the extracted melody, 
we got the subjective perception that melodies were easier to recognize in over-segmented 
cases than in under-segmented situations. 

4.4.5. Putting It All Together 

The operations carried out for salience-based segmentation are summarized in Algorithm 
4.3. Parameter definition is presented in Table 4.3.  

Algorithm 4.3. Salience-based track segmentation. 

1. Detect candidate segmentation points: 

1.1. Apply ZOH to the original salience sequence. 

1.2. Look for clear salience minima, complying with the de-

scribed recursive procedure. 

2. Perform onset detection directly on the audio signal: 

2.1. Implement band-Pass filtering. 
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2.2. Compute the energy variations in each band, based on the 

half-wave-rectified first derivative of the amplitude 

envelope in each band. 

2.3. Integrate the information in all bands and detect onsets 

(linear summation, peak detection and deletion of onset 

candidates in dense regions). 

3. Validate candidate segmentation points: 

3.1. Match detected onsets to the original segmentation can-

didates. 

3.2. Adjust the timing of the segmentation points, as well as 

the start of the notes, to the found onsets. 

4. Repeat salience segmentation after melody identification: 

4.1. Accept all clear minima in the salience sequence (i.e., 

whose prominence is above 35 units). 

5. Return the resulting segmented notes. 

 

Parameter Name Parameter Value 

minPvd 10% of amplitude range 

filterbank frequency range [44, Nyquist frequency] Hz 

filter types elliptic 

filter order 3rd (6th in practice) 

band-pass ripple 1.5 dB (≈3 dB in practice) 

stop-band attenuation 20 dB (≈40 dB in practice) 

decimation frequency 200 Hz 

half-Hanning duration 100 msec 

minPeakSal 0.05 

minOnsetDiff 50 msec 

clearOnsetMag 0.4 

maxValleyOnsetDiff 20 msec 

clearValleyProm 35 

Table 4.3. Parameters for salience-based track segmentation (line 1: detection of candi-
date segmentation points; lines 2 to 11: onset detection; line 13: validation 
of candidate points; line 14: segmentation after melody identification. 
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4.5. Putting It All Together 

Algorithm 4.4. From pitches to notes. 

1.3. Eliminate short tracks. 

1.4. Reassign unused pitch candidates to validated tracks. 

2.1. Conduct note segmentation, namely regarding oscillation 

filtering, filtering of delimited sequences and glis-

sando filtering. 

2.2. Adjust the precise timings of each note candidate. 

The entire methodology for conversion of pitch sequences into musical notes is summed 
up in Algorithm 4.4.  

1. Perform pitch trajectory construction, as in Algorithm 4.1: 

1.1. Quantize frequencies to MIDI note numbers. 

1.2. Implement peak continuation based on frequency prox-

imity, allowing track inactivity and tackling ambigui-

ties through the developed look-ahead procedure. 

2. Perform frequency-based segmentation, as in Algorithm 4.2: 

2.3. Assign a MIDI note number to each note candidate, coping 

with off-key performances or tuning variations. 

3. Execute salience-based segmentation, as in Algorithm 4.3: 

3.1. Define a set of candidate segmentation points, corre-

sponding to minima in the pitch salience sequence. 

3.2. Perform onset detection directly on the raw audio sig-

nal. 

3.3. Validate the previous candidate segmentation points by 

matching them with the obtained note onsets. 

3.4. Segment the note candidates with the defined segmenta-

tion points. 

4. Return the resulting segmented notes. 

3.5. Repeat step 3.1 after the melody identification stage 

(see Chapter 5), selecting all clear salience minima as 

valid segmentation points. 
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4.6. Experimental Results, Analysis and Conclusions 

The results of note detection are presented and discussed in the next paragraphs, namely 
in terms of trajectory creation and frequency and salience-based track segmentation. The 
main encountered difficulties are addressed and possible improvements are suggested. 

A. Analysis of Results 

By comparing the first two columns, it can be seen that after the creation of pitch 
tracks, most of the originally detected pitch candidates are still kept52. An average loss of 
1.1% has however occurred, most notably in the male opera expert (ID 19), where 
11.8% of the initially found pitch candidates were lost. In effect, the SACF was particu-
larly noisy in this track, with several close peaks. This complicated the track building 
process in such a way that the look-ahead scheme could not disentangle. Even so, pitch 
trajectories were generally well constructed. 

Furthermore, missing values in the initial pitch tracks (as a consequence of track 
sleeping) are now filled in with the quantized F0 values. The problem of missing values 
during the attack of the notes is also tackled by adjusting note beginnings with recourse 
to the detected onsets. Excerpt 17 (midi2) is an example of a generous improvement that 
resulted from this procedure, added to the correction of pitch deviations. 

Summary results are presented in Table 4.4. In the first column (after the ID col-
umn), the results of pitch detection are repeated for ease of comparison. The next col-
umns show raw pitch accuracy after PTC and track segmentation. 

As regards note determination, the overall melodic note accuracy raised by almost 
10%, as can be seen in the last column. This is a result of quantizing the extracted and 
annotated F0s to the corresponding ETFs, plus filling in inactive frames. In fact, even 
originally small pitch errors (of, say, 5 cents) disappear after quantization. Moreover, in 
our test-bed the previously mentioned glissando difficulties are resolved since all ex-
tracted F0s are now assigned a value corresponding to the ETF of the identified note. 
This is particularly notorious in Ricky Martin and Avril Lavigne’s excerpts (IDs 5 and 6), 
which improved by around 20%.  

Nevertheless, one problem occurred in the pop1 (20) excerpt, where the accuracy 
decreased just about 6%. This was due to a few semitone errors that came from the note 
labeling stage. In any case, by comparing the values of this sample in the last two col-
umns, we can notice that tuning compensation was not responsible for these errors, as 
will be discussed in the next paragraph. The same semitone difficulty occurred in the 
opera excerpts. However, in these, the accuracy improvements from quantization (a few 

                                                        
52  As in the pitch detection stage, quantized frequencies were used in our database, whereas in the M04 

set exact extracted and annotated frequencies were employed. 
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frames had F0 errors of approximately 40 cents) and the resolution of missing values 
counterbalanced the generated semitone errors, particularly in the male excerpt (19). 

 

ID AMPD 
(MRPA) 

PTC 
(MRPA) 

TS (no compens.) 
(MRNA) 

TS  
(MRNA) 

1 97.0 96.8 98.0 98.0 

2 75.8 75.7 82.2 82.2 

3 89.4 89.1 95.4 95.4 

4 76.4 76.2 96.6 96.6 

5 62.3 61.5 84.9 85.3 

6 75.2 75.2 93.6 93.6 

7 95.7 95.7 98.8 98.8 

8 91.7 91.0 93.6 93.6 

9 55.0 54.7 63.9 86.5 

10 70.9 69.9 81.1 81.1 

11 92.4 92.4 95.4 95.4 

12 89.7 89.4 96.5 96.5 

13 93.6 92.4 98.1 98.1 

14 76.5 75.4 82.1 81.1 

15 81.7 81.2 90.8 90.8 

16 80.8 80.2 92.2 91.7 

17 73.7 73.5 98.4 98.4 

18 79.7 77.6 76.0 79.6 

19 75.1 63.8 69.5 70.2 

20 80.3 78.3 72.5 72.7 

21 88.2 87.1 86.9 87.0 

Avg 
PDB 

80.2% 79.8% 89.4% 91.5% 

Avg 
M04 

81.9% 79.9% 86.3% 86.6% 

Avg 81.0% 79.9% 87.9% 89.2% 

Table 4.4. Note determination results: accuracy for PTC and trajectory segmentation, 
with and without tuning compensation. 

Regarding note labeling, and because of tuning compensation, the overall average 
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results increased from 87.9% to 89.2% (third and fourth columns, respectively). As can 
be seen in the last column of Table 4.4, most excerpts were not affected by the adjust-
ment scheme, in a sign that the median frequency values did not deviate significantly 
from the ETFs. In only two samples (IDs 14 and 16), the labeling step had a slight nega-
tive effect (a decrease of 1% or less), whereas in other samples, the results improved a 
little (e.g., IDs 5, 18, 19, 20 and 21 – from 0.2 to 3.6%). Nonetheless, the applied 
method was responsible for a substantial improvement in the results of the Eliades 
Ochoa’s excerpt (ID 9), which increased from 63.9 to 86.5%. 

 

ID # Tracks 
to Segm. 

% False 
Negatives 

Time  
Error 

% False 
Positives # Extracted % Semitone 

Errors 

1 3 0.0 9.2 16 0 0 

2 1 0.0 16.5 13 0 0 

3 0 (---) (---) 11 0 0 

4 2 0.0 85.8 16 0 0 

5 1 0.0 15.1 10 0 10 

6 3 0.0 10.6 14 0 0 

7 2 0.0 33.5 19 0 0 

8 3 0.0 32.6 12 0 0 

9 1 0.0 24.8 10 0 0 

10 0 (---) (---) 11 0 0 

11 4 25.0 31.3 26 0 0 

12 2 0.0 18.5 23 0 0 

13 0 (---) 0.0 11 0 0 

14 2 0.0 94.2 21 0 4.8 

15 0 (---) (---) 22 0 0 

16 3 0.0 19.4 38 0 0 

17 0 (---) (---) 22 0 0 

18 8 37.5 17.3 37 0 10.8 

19 10 80.0 12.2 52 0 9.6 

20 4 50.0 5.6 34 5.88 11.8 

21 1 0.0 44.1 28 0 0 

Sum / 
Avg PDB 

20 5% 28.7 msec 158 0.0% 0.6% 

Sum / 
Avg M04 

30 43.3% 27.2 msec 288 0.7% 4.9% 

Sum / 
Avg 50 28.0% 28.0 msec 446 0.45% 3.4% 

Table 4.5. Results for frequency-based track segmentation. 

Detailed results for frequency-based segmentation are presented in Table 4.5. The 
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first column represents the number of pitch tracks that are necessary to segment after 
PTC. The second column denotes the percentage of missed segmentations and the third 
one presents the average time error for the obtained segmentation points in comparison 
to the annotated ones. The fourth column shows the total number of extracted notes for 
each song excerpt, from which the percentage of false positives and semitone errors are 
computed (last two columns). Results are summarized in the bottom lines, where the 
values in “#” columns are summed, whereas all the others are averaged. 

In the comparison of extracted and annotated segmentation points, we defined a 
maximum time deviation of max {maxOnsetDist53, 10% of pitch track length}. This is the 
reason why timing errors in the order of 90 msec were present in a few samples.  

The timing accuracy was generally good (an average error of 28 msec), with most de-
viations under 20 msec. These may have even resulted from annotation inaccuracies. A 
few slightly higher deviations occurred in tracks with transition zones with many empty 
frames. However, two particularly high time errors appeared in one track from Dido (ID 
4) and another one from the jazz2 excerpt (ID 14). There, an interesting situation oc-
curred: the pitch track contained a solo note, which was followed by an accompaniment 
note and again a note solo. The accompaniment note was the one responsible for the 
inclusion of two notes in the same pitch track. Then, the most notorious minima in the 
composite salience sequence did not correspond to the actual note boundaries. This 
situation gives a good illustration of some of the difficulties entailed in the accurate con-
struction of pitch tracks in polyphonic contexts. 

As for the detection of segmentation points, very good results were achieved in the 
PDB database (5% false negatives). Nevertheless, the average performance in the M04 
database was poor, where 43.3% of the required segmentations passed undetected. This 
was mostly due to the opera excerpts. In reality, the frequency-based segmentation strat-
egy had some troubles with samples with extreme vibrato. In these, the first stage of 
MIDI quantization led to a succession of several short initial PCFs. Since the method 
relies on the detection of long PCFs, the resulting ambiguities were not properly disen-
tangled. Moreover, many empty frames existed in those tracks, placing additional diffi-
culties on the algorithm. This was particularly problematic in the male excerpt, where 
the SACF was particularly noisy. However, if the opera samples are excluded from analy-
sis, an average of 16.7% turns out, which is more acceptable. Indeed, in all the other 
excerpts most of glissando and frequency-modulated notes were correctly dealt with. 

In terms of false positives, only two notes were inadvertently segmented, namely in 
the pop1 (20) excerpt. In effect, the implemented approach was somewhat more prone 
to false negatives than to false positives.  

Regarding semitone errors, most of them occurred in the opera excerpts. We are es-

                                                        
53  maxOnsetDist = 62.5 msec, as defined and motivated in the next chapter (see Table 5.1). 
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pecially satisfied with the fact that in 446 extracted notes involving complex dynamics 
and tuning issues, only 15 semitone errors (3.4%) occurred. 

To sum up the analysis on frequency segmentation accuracy, we have also calculated 
average precision and recall figures. The average recall (i.e., the percentage of annotated 
segmentation points correctly identified) was 72% and the average precision (i.e., the 
percentage of identified segmentation points that corresponded to actual segmentation 
points) was 94.7%.  

 

ID # Tracks 
to Segm. 

% False 
Negatives. 

Time  
Error # Extracted % False 

Positives 

1 0 (---) (---) 16 0.0 

2 7 57.1 29.0 13 7.7 

3 5 60.0 46.1 11 18.2 

4 2 0.0 25.8 16 6.3 

5 1 0.0 11.1 10 60.0 

6 3 0.0 26.3 14 7.1 

7 8 0.0 17.0 19 0.0 

8 1 0.0 3.2 12 8.3 

9 3 0.0 20.9 10 0.0 

10 4 50.0 9.2 11 9.1 

11 5 40.0 27.6 26 0.0 

12 1 0.0 56.4 23 13.0 

13 0 (---) (---) 11 27.3 

14 3 33.3 12.8 21 9.5 

15 3 0.0 3.1 22 9.1 

16 2 0.0 41.7 38 5.3 

17 6 0.0 35.7 22 45.5 

18 6 33.3 52.8 37 29.7 

19 6 50.0 48.3 52 38.5 

20 1 0.0 10.1 34 14.7 

21 5 20.0 43.3 28 21.4 

Sum / 
Avg PDB 

39 28.2% 22.3 msec 158 8.2% 

Sum / 
Avg M04 

33 21.2% 35.7 msec 288 22.2% 

Sum / 
Avg 72 25.0% 28.8 msec 446 17.3% 

Table 4.6. Results for salience-based track segmentation. 

Most of the encountered difficulties came from opera tracks with extreme vibrato. In 
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those cases, the number of false negatives and semitone errors was clearly above the aver-
age. In any case, in excerpts with moderate vibrato, results were quite satisfactory. 

Regarding salience-based segmentation, results are presented in Table 4.6.  

As expected, this is quite complex in polyphonic contexts, since onset detection is 
not trivial in this case. Furthermore, harmonic collisions between different sources cor-
rupt the energy levels of F0 candidates, in which the algorithm bases the identification of 
segmentation candidates. Also, the distinction between amplitude modulation and note 
boundaries is not always clear. In addition, reverberation effects such as the ones found 
in Enya’s excerpt add extra difficulties to the problem.  

Nevertheless, 25% of false negatives and 17.3% of false positives can be considered 
acceptable for this stage of research. Further complexities were found in Hallelujah (ID 
2), Enya (3), Juan Luis Guerra (10), Battlefield Band (11) and male opera (19), where the 
number of false negatives was clearly above the average. These generally correspond to 
samples with higher polyphonic complexity, reverberation or tremolo (opera). In other 
complicated excerpts, such as Eliades Ochoa’s, the algorithm was rather successful.  

In some other excerpts, false negatives did not occur significantly but false positives 
appeared instead, e.g., in Ricky Martin (5) and midi2 (17). In reality, the balance be-
tween under and over-segmentation proved difficult to achieve. 

With respect to timings, some deviations of around 40-50 msec occurred, which are 
higher than desired, though not excessively. This happened partly because the exact loca-
tions of valleys in the pitch salience sequences are disturbed by harmonic collisions with 
sonic components from other sources. Slight annotation errors also affected it. 

To sum up the salience-based segmentation phase, as the number of identified seg-
mentation points was high in comparison to the actual segmentation points, the average 
precision was low: 41.2%. With respect to recall, an average of 75.0% was accomplished. 

In order to evaluate the influence of parameter values in the variance of the results, 
the employed thresholds were individually modified, typically in a [-50%, +50%] range 
from the assigned values. Here, we did not evaluate the results in terms of precision and 
recall (due to the partly manual evaluation that was necessary to conduct at this stage, 
e.g., in the inspection of the created trajectories, so as to identify the required segmenta-
tion points). Instead, the overall outcome on melody identification was measured. Here, 
a maximum average decrease of 6% was observed in the MRNA metric. However, a few 
individual excerpts had higher variations. For instance, in Juan Luis Guerra’s sample (ID 
10) we noticed performance oscillations of up to +5% and –15%. 

Of particular interest is the minNoteLen parameter, as this is the main factor involved 
in frequency-based segmentation. A range of values between 60 and 150 msec was ex-
perimented, where the maximum perceived decrease in the average melody note accuracy 
was 6.5%, stemming from a minimum note duration of 60 msec. Moreover, best results 
were obtained with the defined threshold (125 msec). It is noteworthy that this value is 
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close to the 150 msec referred by Bregman [Bregman, 1990, pp. 462]. Although we did 
not compute precision and recall figures, we confirmed that this value also led to the 
most accurate frequency-based segmentation (by visual inspection). 

Finally, in the MIREX’2004 evaluation, except for our algorithm only Bello’s carried 
out note segmentation. An edit distance score was calculated, in which our method be-
haved generally better as a direct consequence of its overall higher pitch detection accu-
racy [Gómez et al., 2006; MIREX, 2004]. Nonetheless, even in several cases where Bello’s 
algorithm had a better pitch detection performance, our approach still yielded a better 
edit distance score (see Section 2.6.2). This is a result of Bello’s mechanism for note de-
termination. Although not many details on the pursued strategy are provided [Gómez et 
al., 2006], we observed that over-segmentation frequently occurred in his method, which 
probably resulted from too low maximum trajectory sleeping. Hence, a profusion of 
fragments corresponding to the same note arises. These repetitions are punished as 
wrong insertions by the edit distance metric, increasing the computed distance. 

B. Limitations of the Algorithm and Possible Improvements 

A difficulty in pitch trajectory construction derives from the fact that accompani-
ment notes may be included in melodic pitch tracks because of frequency continuation. 
This is a complex problem, since timbre is hard to “measure” and, thus, sources are not 
recognized before peak continuation. In any case, when this situation causes sudden in-
tensity differences, salience-based segmentation can handle it to some extent. 

Likewise, melodic notes may be continued by harmonics of other notes. This situa-
tion further motivates the need to solve the issue of harmonically-related peaks during 
pitch detection. Again, salience-based segmentation attenuates this difficulty. 

Also, the question of closely spaced F0 candidates gave rise to some difficulties in 
the PTC process, namely in the male opera excerpt. Once more, this could be tackled 
complying with the lines suggested in the pitch detection stage (Section 3.6). 

Regarding track inactivity, when F0s are missing the overall energy level in the note’s 
frequency range should be analyzed. For the sake of accuracy, a track should only be al-
lowed to sleep if the energy level in its frequency range was sufficient to presume mask-
ing. Otherwise, no perceptual restoration would have occurred, being more likely that 
the note had actually stopped. 

As for frequency-based segmentation, the main difficulties of the followed method-
ology resulted from its dependency on the minNoteLen parameter. Indeed, pitch tracks 
with extreme vibrato were sometimes hard to accurately segment. This is a more funda-
mental issue, which would probably require a different PCF identification approach. 
Namely, instead of quantizing the F0 values to MIDI note numbers, the original fre-
quency curve should be directly analyzed. However, algorithms for piecewise function 
approximation seemed inadequate to our problem, besides being rather parame-
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ter-dependent. 

Finally, the results achieved for salience-based segmentation are encouraging but the 
balance between over and under-segmentation needs additional attention. Namely, more 
robust polyphonic onset detectors are required. Also, the onsets of accompaniment 
notes may mislead the procedure for validation of segmentation candidates. A possible 
way of improving the method would be to avoid validations by onset candidates that 
match the beginnings of other detected notes. Moreover, the pitch salience sequence is 
corrupted by harmonic collisions, especially in excerpts with higher polyphonic complex-
ity. This could be attenuated by an iterative estimation and cancellation scheme for pitch 
detection, as referred to in Section 3.6. 

As regards the discrimination between note boundaries and amplitude modulation, 
this should be further worked out. In fact, Albert Bregman suggests that abrupt rises in 
intensity represent new notes [Bregman, 1990, pp. 71]. Therefore, if amplitude modula-
tion is slow, the succession of pitches is simply heard as a single note. However, when 
amplitude modulation is fast, the higher rates of intensity growth promote the percep-
tion of several consecutive notes. In this way, the slope of salience variation until 
steady-state is reached should be measured and used to validate segmentation candidates. 

 



 

Chapter 5  
 
IDENTIFICATION OF MELODIC NOTES 

“Figure-ground relationships constitute the main dialectic of our Euro-

pean-North American music culture and can be found in the dualism be-

tween melody and accompaniment.” 

Philip Tagg, “Reading Sounds”, 1986 

In the final stage of the present melody detection system, our goal is to identify the 
notes that convey the main melodic line. As a result of the previous stages, several 
notes are created, among which the melody must be isolated.  

The separation of the melodic notes in a musical ensemble is not a trivial task. In ef-
fect, many features of auditory organization influence the perception of the main melody 
by humans, for instance in terms of the pitch, timbre and intensity content of the in-
strumental lines in the sonic mixture. Moreover, factors such as selective attention, 
experience or personal interest, are involved in figure-ground organization as well.  

In the algorithm described in this chapter, we have made particular use of intensity 
and frequency proximity aspects. As the conducted approach induces the selection of 
accompaniment notes when the melody is absent, we also aim to remove such notes.  

Section 5.1. Introduction  

We begin this chapter with a review of the existing methodologies for identification 
of melodic notes (or melodic pitch lines) in an ensemble.  

Section 5.2. Elimination of Ghost Harmonically-Related Notes  

Our algorithm starts with the elimination of ghost harmonically-related notes, which 
are a consequence of selecting both true pitches and sub or super-harmonics during 
pitch detection. In order to dispose of such notes, we make use of the perceptual rules of 
sound organization designated as harmonicity and common fate. 

155 
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Section 5.3. Selection of the Most Salient Notes  

As an initial attempt towards melody identification, we select the most salient notes 
among the ones present after ghost note elimination. Here, non-dominant notes (where 
dominance is defined according to note intensity level) are deleted, as well as 
low-frequency notes.  

Since the remaining notes are not allowed to overlap in time, such note overlaps are 
resolved. Basically, a note might either be removed or truncated. 

Section 5.4. Melody Smoothing  

The previous scheme has some limitations, as the notes comprising the melody are 
not always the most salient ones. This is particularly clear when abrupt pitch transitions 
occur. Thus, we improved the method by smoothing out the melody contour.  

To this end, octave-correction is first employed, since not all ghost notes were previ-
ously eliminated. 

Next, we handle abrupt pitch jumps by defining regions of smoothness and correct-
ing situations where the extracted melody moves suddenly to different pitch registers. 

Finally, since erroneous notes are discarded, we fill in the gaps with notes that are 
more likely to belong to the main melody. As a result of removing erroneous notes, the 
original timings of previously truncated notes are restored as much as possible.  

Section 5.5. Elimination of Spurious Accompaniment Notes 

In the previous steps, the algorithm outputs the most salient notes at each time that 
guarantee a smooth melody contour. Consequently, notes from the accompaniment may 
turn up. Particularly, spurious accompaniment notes may appear when pauses between 
melody notes are sufficiently long. Hence, we dispose of such notes by looking for sud-
den intensity or duration variations in the sequence of melodic notes. 

Section 5.6. Note Clustering  

Besides the previous case, notes from the predominant accompaniment are also 
output when the solo stops. In reality, it is common that a secondary instrument takes 
the lead during the time intervals when the melody is silent. In this way, we aim to dis-
criminate between true melodic notes and false positives through note clustering. Here, a 
number of acoustic features are extracted and fed in to a Gaussian Mixture Model that 
attempts to separate the melody from the accompaniment. In addition, dimensionality 
reduction is performed, recurring to Principal Component Analysis and forward feature 
selection. 
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Section 5.7. Putting It All Together 

The entire melody identification algorithm is summarized and the defined model 
parameters are listed in this section. 

Section 5.8. Experimental Results, Analysis and Conclusions  

Finally, experimental results are presented and analyzed. The main benefits and 
shortcomings of the proposed mechanism are discussed and pointers for future im-
provements are provided. 

5.1. Introduction 

The identification of the notes bearing the melody of a song, being probably the central 
task of any melody detection algorithm, is also one of the most difficult to carry out.  

The perception of melody is related to the phenomenon of figure-ground organiza-
tion, as referred to in Section 2.2.2. Furthermore, according to our context, the main 
melody in a song may emerge from the identification of the most prominent musical 
part, which clearly stands out from a more diffuse, less organized or less interesting back-
ground. Thus, melody extraction can be regarded as a problem of source separation.  

5.1.1. Approaches based on Full Source Separation 

Full sound source separation is an important issue for polyphonic music analysis and 
automatic music transcription. However, computational sound-source recognition and, 
particularly, separation has proved to be very hard. Some attempts have been conducted 
in that direction with no general neither accurate results so far. Namely:  

i) techniques inspired on computational auditory system analysis [Ellis, 1996]; 

ii) rule-based methodologies, targeting especially musical signals, which take advan-
tage of voice-leading rules of music composition [Temperley, 2001];  

iii) local optimization approaches, such as the one in [Kilian and Hoos, 2002] for 
voice separation in music in symbolic notation, where a cost function, making 
particular use of pitch and gap distances, is optimized; 

iv) and data-adaptive techniques, a.k.a. blind source separation, where there is no 
knowledge of the sources present, which induces to their estimation based solely 
on the available data with recourse to techniques such as Independent Compo-
nent Analysis [Casey and Westner, 2000; Smaragdis, 2001] or assuming sparse-
ness of the sources [Plumbey et al., 2001; Virtanen, 2003]. 
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The first three approaches are intimately related, since the usually employed 
voice-leading rules and cost metrics strongly rely on perceptual rules of sound organiza-
tion [Huron, 2001]. However, without exploiting timbre information (which is hard to 
acquire unequivocally, as will be discussed), several difficulties arise, for example when 
performing separation based on rules such as “avoid crossing of voices”. Therefore, 
data-adaptive techniques seem more appealing here, since they aim to unscramble the 
mixture into its constituent time-domain signals without any explicit assumptions on 
sound organization or model parameters. This, in turn, would allow for subsequent 
monophonic pitch detection. Nevertheless, the accuracy of data-driven techniques in 
polyphonic real-world signals is much too low. 

5.1.2. Approaches based on Figure-Ground Organization  

On the other hand, as far as melody identification is concerned, full source separation is 
not the ultimate goal. Instead, the objective is to separate the melody from “all the rest”. 
In this way, the problem of complete source separation is usually not tackled. Instead, 
the notes (or the pitch line) conveying the melody are separated from the background 
accompaniment, in compliance with the lines of figure-ground organization.  

This figure-ground approach is inherent to most of the melody detection systems 
that extract several pitch candidates in each frame. As discussed in Section 2.4.2, Goto 
defines the main melodic line as the one corresponding to the most predominant agent, 
utilizing specific salience and reliability measures [Goto, 2000]. In [Marolt, 2005], me-
lodic seeds are first obtained recurring to the loudest fragments, after which clusters are 
formed based on similarity metrics. In the melodic-path-founding strategy devised in 
[Eggink and Brown, 2004], F0 strength, i.e., the intensity of each F0 candidate, proved to 
be the most important knowledge source, although the instrument recognition module 
played an important role on the selection of the notes representing to the solo. In Bello’s 
method [Gómez et al., 2006], the melodic and non-melodic fragments that result from 
peak continuation are discriminated using a rule-based system: the melodic path is the 
one that maximizes the energy while minimizing steep changes in the tonal sequence. 
Dressler also defines the melodic pitch line following a rule-based scheme, where tone 
successions containing intervals larger than the octave are avoided and notes from mid-
dle or higher pitch registers are preferred [Dressler, 2005]. In [Ryynänen and Klapuri, 
2005b], the optimal melodic path is found with recourse to a musicological model where 
between-note transition probabilities are employed. 

We founded our algorithm on the assumptions that i) regarding intensity, the main 
melodic line often stands out in the mixture (salience principle) and that ii) melodies are 
usually smooth in terms of pitch intervals (melodic smoothness principle). Moreover, 
although it can be argued that in the perception of melody the dominant accompani-
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ment is perceived as figure when the solo is absent, we defined melody in a stricter sense, 
i.e., only the sequence corresponding to a solo instrument, as referred to in Section 2.3. 
Hence, we conducted some efforts to dispose of false positives, i.e., non-melodic notes in 
the resulting melody, by spurious note removal and clustering.  

5.2. Elimination of Ghost Harmonically-Related Notes 

The set of candidate notes resulting from trajectory segmentation typically contains sev-
eral ghost harmonically-related notes. The frequency partials in each ghost note are actually 
multiples of the true note's F0, if the ghost note is higher than the true note, or submul-
tiples, if it is lower. Therefore, the objective of this step is to get rid of such notes. 

In short, we make use of the perceptual rules of sound organization designated as 
harmonicity and common fate, described in Section 2.2.2 [Bregman, 1990, pp. 227-292]. 
Namely, we look for pairs of harmonically-related notes with common onsets or endings 
and with common modulation, i.e., whose frequency and salience sequences change in 
parallel. We then delete the least salient note if the ratio of its salience to the salience of 
the other note is below a defined threshold.  

5.2.1. Exploiting Harmonicity 

In the harmonicity rule, if two note candidates occurring in a common time window 
have ETFs such that one is a multiple of the other54, it is possible that both frequency 
sequences denote harmonics of the same note. In this case, one of the notes might have 
resulted from the selection of super/sub-harmonics of the F0 in the pitch detection 
stage. In order to deal with possible semitone errors, a tolerance of ± 1 semitone is ad-
mitted in the comparison of such note candidates. 

As to the mentioned “common time window”, some relaxation is introduced by al-
lowing a maximum separation between the beginnings and endings of the note candi-
dates under comparison. In quantitative terms, two notes are said to have common on-
sets if their beginnings differ at most by maxOnsetDist msec, which was set to the same 
value as the maxSleepLen parameter, i.e., 62.5 msec. The same maximum difference ap-
plies when comparing the two notes’ endpoints. This somewhat high value was experi-
mentally set, so as to handle timing inaccuracies that may result from noise and fre-
quency drifting at the beginnings and endings of notes. In actual notes, the onset asyn-

                                                        
54  In case we only compared notes separated by an octave, some ghosts would pass undetected. Illustrat-

ing, for a note whose ETF is 220 Hz, we wish to check all its multiples, e.g., 220, 440, 660 and 880 
Hz. If only octaves were considered, a hypothetical ghost note at 660 Hz would not be evaluated. 
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chronies between partials do not exceed 30 to 40 msec, since at that point each partial 
may be heard as a separate tone [Handel, 1989, pp. 214].  

The detected pairs of harmonically-related note candidates are then analyzed, as 
there is a possibility that one of them is a ghost note. In order to check this hypothesis 
out, we evaluate the so-called common fate rule, as well as the salience of the two notes. 

5.2.2. Exploiting Common Fate 

In the common fate rule, harmonically-related frequency sequences can be grouped by 
taking advantage of aspects such as common modulation, both in frequency and in am-
plitude. Indeed, components belonging to the same note tend to have synchronized and 
parallel changes in frequency and intensity (here represented by pitch salience). Hence, 
we measure the distance between frequency curves for pairs of harmonically-related note 
candidates. Similarly, we calculate the distance between their salience sequences. 

Formally, the distance between frequency curves is calculated as in (5.1), based on 
[Virtanen and Klapuri, 2000]:  
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where df, represents the distance between two frequency trajectories, fi(t) and fj(t), during 
the time interval [t1, t2] where they both exist. The idea of (5.1) is to scale the amplitude 
of each curve by its average, thus, normalizing it. Simple mean subtraction is insufficient 
here, as the frequency curves of different harmonics have different ranges. The expres-
sion in (5.1) is similar to normalized correlation, which could have been alternatively 
employed. An identical process is followed for the salience sequences. 

This procedure is illustrated in Figure 5.1 for the frequency sequences of two har-
monically-related note candidates from an opera excerpt with extreme vibrato (opera 
female 2 in Table 2.1). We can see that the normalized frequency curves are very similar, 
which provide good evidence that the two sequences are both part of the same note.  

Additionally, we found it beneficial to measure the distance between the normalized 
derivatives of frequency curves as well (and, likewise, the derivatives of salience se-
quences). In fact, it is common that these curves have high absolute distances showing, 
however, the same trends. The distance between derivatives is used as another measure 
of curve similarity. This is illustrated in Figure 5.2 for the pitch salience sequences of two 
notes from the same opera excerpt. It can be seen that, although the depicted saliences 
differ somewhat, their trends are very similar, i.e., the distance between the normalized 
derivates is small. In this way, it is also likely that they both belong to the same note. 
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Figure 5.1. Similarity analysis of frequency curves. 
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Figure 5.2. Similarity analysis of salience trends. 

To conclude the analysis on common modulation, we assume that the two fre-
quency sequences have parallel changes if any of the four computed distances (in fre-
quency, salience, or their derivatives) is below a threshold of 0.04, defined in the maxAl-
lowedCurveDist parameter. 

5.2.3. Integration of Harmonicity and Common Fate 

Finally, we compare the saliences of pairs of harmonically-related notes that satisfy the 
common fate requirement in order to take a decision: if the salience of one of the notes 
is much lower than the other’s, the least salient one is eliminated. Quantifying, a note is 
removed if its salience is less than 40% the one of the most salient note in case they are 
separated by an octave (set in the minBasicSalienceRatio parameter), 20% in case the ETF 
of the highest note is the triple of that of the lowest one, and so forth.  
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5.2.4. Putting It All Together 

This algorithm is summarized in Algorithm 5.1. Parameter definition is presented in 
Table 5.1.  

Algorithm 5.1. Elimination of harmonically-related notes. 

1. Sort all notes in ascending onset time order. 

2. For each note, i: 

2.1. Look for a note, j, such that: 

a) (|onset(i) – onset(j)| ≤ maxOnsetDist or |ending(i) – 

ending(j)| ≤ maxOnsetDist) and 

b) ETF(MIDI(i, i ± 1)) is a (sub-)multiple of 

ETF(MIDI(j)) (the ratio, r, of the highest ETF to the 

lowest is calculated) and 

c) the two notes have parallel changes in frequency and 

salience. 

2.2. If note j was found, 

2.2.1. Compute the average salience of the two notes in 

their common time interval, avgSal. 

2.2.2. If avgSal(j)/avgSal(i) ≤ minBasicSalienceRatio/(r-

1) (i.e., 0.4/(r-1)) then  

- delete note j and repeat step 2.1 until no more 

notes are found. 

2.2.3. If avgSal(i)/avgSal(j) ≤ minBasicSalienceRatio/(r-

1) then  

- delete i and repeat step 2 for the next note. 

3. Return the reduced set of notes. 

 

Parameter Name Parameter Value 

maxOnsetDist maxSleepLen (62.5 msec) 

maxAllowedCurveDist 0.04 

minBasicSalienceRatio 0.4 

Table 5.1. Parameters for the elimination of ghost harmonically-related notes. 
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The values for curve distance and salience ratio thresholds were experimentally set 
so that the elimination of true melodic notes was minimal, while still deleting a substan-
tial amount of ghost notes. This is motivated by the fact that missing notes cannot be 
recovered in later stages but false candidates can be eliminated afterwards. 

In the used database, an average of 37.8% of the notes resulting from the note de-
termination stage were removed. Moreover, only 0.3% of true melodic notes were inad-
vertently deleted. Although many ghost notes are discarded at this point, a high number 
of non-melodic notes is still present. Namely, only 25.0% of all notes belong to the mel-
ody. This poses interesting challenges to the next steps of the algorithm.  

Exemplifying, in the same excerpt from “Rua Dona Margarida” used before, 57.9% 
of the notes are eliminated (55 out of 95). From the remaining 40, only 19 should be 
selected as making part of the final melody. This point is illustrated in Figure 5.3.  
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Figure 5.3. Results of the elimination of ghost notes. 

As before, the black lines denote the resulting notes after elimination (i.e., the 40 
remaining notes), whereas the gray horizontal lines represent the original annotated 
notes (19 notes; some of the lines correspond to sequences of several notes at the same 
pitch, whose intervals are not noticeable due to the graphic resolution). As can be seen, 
in this example all the melodic notes are present and the task of the algorithm is now to 
identify them among the entire set of notes. 

5.3. Selection of the Most Salient Notes 

As previously mentioned, intensity is an important cue in melody identification. There-
fore, we select the most salient notes as an initial attempt to melody detection. We have 
also evaluated the possibility of choosing the notes with highest frequency, as suggested 
in [Francès, 1958] and referred to in Section 2.2.2. However, the results were poor, as 
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could already be expected by observing the high-frequency non-melodic notes (many of 
them ghost notes) depicted in Figure 5.3.  

Hence, intensity was initially employed as the main cue for figure-ground separation. 
The most salient notes were selected by deleting non-dominant notes and resolving situa-
tions where note overlapping occurs, as described in the following paragraphs. 

5.3.1. Elimination of Non-Dominant Notes 

A. Removal of Low-Pitch Notes 

Before selecting the most salient notes, it is important to take into account that bass 
sounds are usually very intense. Thus, we first exclude notes in low frequency ranges, 
where the bass is most likely to be found. This aims to prevent the selection of too many 
erroneous notes, which would put at risk melody smoothing in the next step. 

In this way, the algorithm starts by removing notes below MIDI note number 50 
(146.83 Hz), defined in the minMIDINote parameter.  

Therefore, our approach is biased towards selecting middle and high-frequency 
notes, which indeed corresponds to most real situations. Anyway, low-frequency notes 
may still be selected in the next stage, where this restriction will be relaxed, as long as 
melodic smoothness is ensured.  

Alternatively, we could have filtered bass notes in the front-end of the system. How-
ever, this would probably lead to the irrecoverable loss of low-frequency melodic notes. 

B. Definition of Song Segments and Disposal of Low-Salience Notes 
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Figure 5.4. Definition of segments in a song excerpt. 
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At this point, low-salience notes are discarded. To this end, we segment the song ex-
cerpt under analysis, as illustrated in Figure 5.4, where, sk denotes the kth segment.  

In each segment, we determine the three most salient notes (set in the numTop pa-
rameter), based on the average pitch salience of each note in each segment, as in (5.2): 
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There, salience[j, i] denotes the salience of the jth note in the ith frame (as computed 
in Section 3.3.4) and avgSegmSalience[j, k] stands for the average salience of the same note 
in the kth segment, calculated only in the non-empty frames. 

Then, we dispose of all notes that are non-dominant, i.e., that are not in the most 
salient segment for at least 35% of their total number of frames (set in the minTopPerc-
Dur parameter) or are not in the three most salient segments for at least 80% of their 
total duration (defined in the minNumTopPercDur parameter). 

5.3.2. Resolution of Note Overlaps 

After discarding the non-dominant notes, it often happens that the remaining ones over-
lap in time, which should not be permitted. With the purpose of handling such situa-
tions, we first analyze the possible types of time overlapping between pairs of notes.  

A. Determination of Overlapping Type 

We have identified six overlapping types, illustrated in Figure 5.5. There, the refer-
ence note (thick line) is, by definition, the one with the earliest onset time. The other 
horizontal lines represent time spans of hypothetical notes that overlap in time with the 
reference note. 

The first considered overlapping type corresponds to the situation where the two 
notes have approximately the same onsets and endings. A maximum allowed distance 
between the onsets and endings, maxOnsetDist, was defined as in the previous section 
(62.5 msec, which leads to 11 frames and, thus, 63.9 msec in reality).  

In the second and third overlapping types, the two notes have common onsets but 
different endpoints.  

In the fourth possibility, the notes under comparison have equal endings but differ-
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ent onsets.  

Finally, in the fifth and sixth overlapping types, the two notes have neither common 
onsets nor common endings. The fifth type denotes inclusions, where the second note 
starts after and ends before the reference note. The sixth type corresponds to the situa-
tions where the notes intersect, i.e., the second note starts and finishes after, respectively, 
the beginning and the ending of the reference note, considering again the maximum 
allowed difference. 

1) Equal onsets
    and endings

6) Intersection

Reference
Note

2) Equal onsets -
    shorter

3) Equal onsets -
    longer

4) Equal
    endings

maxOnsetDist

5) Inclusion

 

Figure 5.5. Types of note overlapping. 

B. Resolution of Overlapping: Elimination or Truncation of Notes 

Each candidate note is then compared with the notes that overlap it in time and the 
overlapping type is determined. In short, preference is given to the note with the highest 
average salience in their common time interval, causing the elimination of the other 
note, or to its truncation at the beginning or ending.  

For example, in the second overlapping type in Figure 5.5, if the reference note has 
the highest average salience in the common time interval, the second note is deleted. In 
the opposite case, the second note is left unchanged whereas the reference note is trun-
cated at its beginning, i.e., it will start later, immediately after the second note ends.  

The same reasoning applies to all cases, except for inclusions (situation 5). Here, if 
the second note is the strongest one, only the beginning or the ending of the reference 
note is kept, depending on the salience of each of them.  

Additionally, the original note timings are saved for future restoration, in case any of 
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the selected notes is removed in the following stages.  

5.3.3. Putting It All Together 

The results of the implemented procedures are illustrated in Figure 5.6 for an excerpt 
from Pachelbel’s Kanon. There, the actual melody’s notes are gray; the notes selected by 
the algorithm are black; and dashed lines represent notes that were kept after the elimi-
nation of ghosts. 
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Figure 5.6. Results of the algorithm for selection of the most salient notes. 

We can see that some erroneous notes are extracted, whereas true melody notes are 
excluded. Namely, some octave errors occur. In fact, one of the limitations of only taking 
into consideration note salience is that the notes comprising the melody are not always 
the most salient ones. In this situation, wrong notes may be selected as belonging to the 
melody, whereas true notes are left out. This is particularly clear when abrupt pitch tran-
sitions are found, as can be seen in the previous figure. Hence, we improved our method 
by smoothing out the melody contour, as discussed in the next section. 

The process for extraction of salient notes is summarized in Algorithm 5.2. Parame-
ter definition is presented in Table 5.2.  

Algorithm 5.2. Selection of the most salient notes. 

1. Sort all notes in ascending onset time order. 

2. Discard notes i, such that MIDI(i) < 50. 

3. Eliminate non-dominant notes. 

3.1. Define song segments, according to Figure 5.4. 
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3.2. For each segment, s, 

3.2.1. Compute the average salience of each note in s. 

3.3. For each note, i: 

3.3.1. Find the segments where note i is the most sali-

ent one and calculate the corresponding percent-

age of frames, percTop (comparing to the note’s 

total number of frames). 

3.3.2. Compute percTop3 in a similar way, by considering 

the segments where note i is in the numTop = 3 

most salient ones. 

3.3.3. If percTop < minTopPercDur (35%) and percTop3 < 

minNumTopPercDur (80%), delete note i. 

4. Resolve note overlapping. 

4.1. Save the original note beginnings and endings. 

4.2. For each resulting note, i (reference note): 

4.2.1. Look for a note j that overlaps note i, i.e., on-

set(j) ≤ ending(i). 

4.2.2. Determine the overlapping type (Figure 5.5). 

4.2.3. Calculate the average salience of each note, 

avgSal, in their common time interval. 

4.2.4. If avgSal(j) ≤ avgSal(i) eliminate or truncate 

note j (based on the overlapping type) and repeat 

step 4.2.1. until no more notes are found. 

4.2.5. Otherwise, delete or truncate note i and repeat 

step 4.2 for the next note. 

5. Return the obtained melody notes (salient notes). 

 

Parameter Name Parameter Value 

minMIDINote 50 

numTop 3 

minNumTopPercDur 0.8 

minTopPercDur 0.35 

Table 5.2. Parameters for extraction of salient notes. 
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5.4. Melody Smoothing 

In an attempt to demonstrate that musicians generally prefer to use smaller note steps, 
the psychologist Otto Ortmann counted the number of sequential pitch intervals of dif-
ferent sizes in several songs by classical composers. He found out that the smallest ones 
happen more frequently and that the number of occurrences of each roughly decreases 
in inverse proportion to the size of the interval [Bregman, 1990, pp. 462]. Wei Chai also 
presented some statistical results for the music corpora used in her QBH system [Chai, 
2001, pp. 46-47]. In the used dataset, comprising mostly folk music but also classical and 
pop/rock songs, interval histograms were computed which also showed that the fre-
quency of occurrence of sequential intervals dropped as the interval size increases, being 
just about zero above seven semitones. Interestingly, such drop was not monotonously 
decreasing. Rather, some intervals were more frequent than others, forming an oscillat-
ing pattern that decreased towards zero. For instance, until three semitones, odd inter-
vals (both positive and negative) are clearly less frequent than the even ones. After that, 
the oscillation continues, but now the even intervals are less frequent. 

So being, we improved the melody extraction stage by taking advantage of this me-
lodic smoothness principle. Although this might be a culturally dependent principle, it is 
relevant at least in Western tonal music, the one considered in this research work. The 
basic idea is to detect abrupt pitch intervals and replace notes corresponding to sudden 
movements to different pitch registers by notes that smooth out the extracted melody. 

5.4.1. Octave Correction 

We start to improve the tentative melody that results from the selection of the most sali-
ent notes by performing octave correction. In effect, octave errors might occur because, 
usually, Algorithm 5.1 does not eliminate all ghost harmonically-related notes.  

In order to correct these errors, we select all notes for which no octaves (either above 
or below) are found and compute the average of their pitches (expressed as MIDI note 
numbers). Then, we analyze all notes that have octaves with common onsets (some time 
difference allowed, as before): if the octave is closer to the computed average, the initial 
note is replaced by the respective octave.  

This simple first step already improves the final melody but a few octave errors, as 
well as abrupt transitions, are still kept, which will be now worked out. 

5.4.2. Resolution of Abrupt Note Transitions 

In the second step, we smooth out the melodic contour by deleting or replacing notes 
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corresponding to sudden movements to different pitch registers.  

A. Definition of Regions of Smoothness 

To this end, we first define regions of smoothness, i.e., regions with no abrupt pitch 
intervals. Here, intervals above a fifth, i.e., seven semitones (set in the maxMIDIinterval 
parameter), are defined as abrupt, as illustrated in Figure 5.7 for notes a1, a2 and a3 (in 
bold). The maximum interval was set in conformity with the importance of the perfect 
fifth in Western music. Other intervals were evaluated as well, but, in the used excerpts, 
best results were obtained with the fifth. In the example in Figure 5.7, four initial 
smooth regions are detected (R1, R2, R3 and R4). 
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Figure 5.7. Regions of smoothness. 

B. Validation of Regions and Analysis of Neighbors: Note Removal or Replacement 

We then define the longest region55 as a correct region (region R3, in Figure 5.7, 
filled in gray) and determine the allowed note range for its adjacent regions (R2 and R4).  

Regarding the region immediately before the longest one (the “left region”, R2), we 
define its allowed range based on the first note of the correct region, i.e., note a2 with 
MIDI note number 70. Keeping in mind the importance of the perfect fifth, the allowed 
range for the left region is 70 ± 7, i.e., [63, 77]. As region R2 contains no note in the 
determined range, this region is a candidate for elimination. However, before deletion, 
we first look for octaves of each of its notes in the admitted range. In case at least one 
octave is found, the note in cause is replaced by the respective octave and no note is 
deleted in this iteration. Otherwise, all the notes in the region are eliminated.  

                                                       

As for the region immediately after (the “right region”, R4), we carry out a similar 

 
55  The length of each region is calculated as the sum of the lengths of all its notes. 
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analysis. Hence, we define the allowed range based on the last note of the correct region, 
e.g., 69 in this example, resulting in the range [62, 76]. Since region R4 contains a few 
notes in the derived range, its first note (i.e., note a3) is marked as non-abrupt and re-
gions R3 and R4 are joined together (still, if an octave of note a3 is found in the allowed 
range, this octave is used instead of the initial note). In this way, abrupt transitions are 
permitted in case adjacent regions have notes in similar ranges. This situation occurs in 
some musical pieces as, for example, Pachelbel’s Kanon (Figure 5.6 and Figure 5.8). 

If no notes are replaced or eliminated in the current region, the remaining regions 
are similarly analyzed, in descending length order. If no change at all is done in all re-
gions, the algorithm stops. Otherwise, whenever a change is accomplished, the set of 
operations for definition of regions of smoothness, analysis of neighbors and dele-
tion/substitution is repeated until no change is done. In the successive iterations, re-
gions of smoothness are defined taking into consideration the notes previously marked 
as non-abrupt, e.g., note a3 in region R4 in the above descriptions. Therefore, in the next 
iteration, regions R3 and R4 will be joined into one region. 

5.4.3. Gap Filling 

As a result of region elimination, the respective notes need to be replaced by other notes 
that are more likely to belong to the melody, according to the smoothness principle.  

Thus, we fill in each gap with the most salient notes that start in that time interval 
and are in the allowed range. Again, we do not permit note overlapping. In this gap fill-
ing scheme, the previous restriction on the minimum permitted pitch (in the selection of 
the most salient notes) no longer applies: the most salient note in the allowed range is 
selected, regardless of having a low MIDI note number. Indeed, that constraint was im-
posed as a necessity to prevent the selection of too many erroneous notes (particularly 
bass notes), which would jeopardize melody smoothing. Hence, we kept the general as-
sumption that melodies are contained in middle frequency ranges, but admitting now 
the selection of lower-pitch notes, as long as the smoothness requirement is fulfilled.  

However, because of gap-filling, accompaniment notes may be inadvertently added, 
which we make an effort to discard in the next stages of the algorithm. 

5.4.4. Note Timing Restoration 

Finally, due to note elimination and substitution, previously truncated notes may now be 
restored to their original temporal intervals (or at least partly extended). In this way, if 
any of the frames corresponding to the initial interval of a truncated note become empty, 
its start and endpoints are tentatively reset to their original values. If this is not possible, 
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they are adjusted to the position of the first empty frame after the note immediately be-
fore (onset) or to the position of the last empty frame before the following note (ending).  

5.4.5. Putting It All Together 

The results of the executed procedures are illustrated in Figure 5.8 for the same excerpt 
from Pachelbel’s Kanon presented before. We can see that only one erroneous note was 
output (signaled by an ellipse), corresponding to an octave error. This example is particu-
larly challenging to our melody-smoothing approach as a consequence of the periodic 
abrupt transitions present. Yet, the performance was quite good. 
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Figure 5.8. Results of the melody-smoothing algorithm. 

The described implementation of the melodic smoothness principle is summarized 
in Algorithm 5.3. Parameter definition is presented in Table 5.3. 

Algorithm 5.3. Melody extraction using melodic smoothness. 

1. Correct octave errors: 

1.1. Select all notes with no octaves (above or below). 

1.2. Compute the average of their pitches, avgMIDI. 

1.3. For each note, i: 

1.3.1. Look for a note j, such that: 

a) (|onset(i) – onset(j)| ≤ maxOnsetDist and 

b) MIDI(i) – MIDI(j)| = 12k. 

1.3.2. Replace the current note, i, by the found note 
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(the octave), j, if j is closer to avgMIDI, i.e., 

if |MIDI(j) – avgMIDI| < |MIDI(i) – avgMIDI|. 

2. Smooth out the melodic contour by deleting or replacing notes 

corresponding to sudden movements to other pitch registers: 

2.1. Define regions of smoothness, which are delimited by 

abrupt notes, i.e., notes i such that 

|MIDI(i) – MIDI(i-1)| > 7 (see Figure 5.7). 

2.2. Select the longest region, r, as a correct region. 

2.3. Analyze the regions immediately before and after region 

r for possible note deletion or octave substitution. 

2.4. If any deletions or substitutions are performed in step 

2.3, repeat from step 2.1; otherwise, repeat from step 

2.2 for the next longest region, until all regions are 

analyzed. 

3. Repeat step 2 until no deletions or substitutions are accom-

plished (take into consideration notes marked as non-abrupt). 

4. Fill in gaps: 

4.1. Look for empty intervals, g, such that duration(g) > 

minNoteLen (125 msec). 

4.2. For each interval, g: 

4.2.1. Look for a set of notes, i, such that: 

a) onset(i) occurs during g and 

b) MIDI(i) is in {MIDI(last note before gap) ± 7} 

or is in {MIDI(first note after gap) ± 7}. 

4.2.2. Select the most salient notes in gap g, as in 

Algorithm 5.2 (except that step 2 is not run). 

5. Restore the truncated notes to their original time intervals, 

as much as possible. 

6. Return the obtained melody notes (salient notes that satisfy 

the melodic smoothness principle). 

 

Parameter Name Parameter Value 

maxMIDIinterval 7 

Table 5.3. Melody smoothing parameters. 
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5.5. Elimination of Spurious Accompaniment Notes 

In the previously described stages of melody extraction, the algorithm outputs the most 
salient notes at each time in the allowed note range. Consequently, false positives may 
turn up. Such notes may be output both when pauses between melody notes are suffi-
ciently long (giving rise to spurious accompaniment notes that are added in between) 
and when the solo is quiet (e.g., the solo has stopped and another instrument takes the 
lead for some time). Hence, false positives should be eliminated, both regarding spurious 
notes and notes that dominate when the solo is absent. 

The segregation of melodic information in the mixture is in fact an important aspect 
in any melody extraction task. In this section, we described the efforts conducted for the 
removal of spurious notes. Note clustering will be described in the next section. 

We observed that, usually, spurious accompaniment notes have lower saliences and 
shorter durations, giving rise to clear intervals with low note salience and length. In this 
way, we attempt to dispose of false positives by detecting and discarding the notes in 
those regions. 

5.5.1. Analysis of the Salience Contour 

Regarding the salience contour, we start by computing the average salience of each note 
in the extracted melody and then looking for deep valleys in the note sequence.  

As with salience-based track segmentation, we detect deep minima in the salience 
contour (see description on page 137 of Section 4.4.1.B). Here, we define a valley as be-
ing profound if its prominence is at least 30 units, a value set in the minDeepValleyProm 
parameter (recall that saliences were normalized to the [0; 100] in the pitch detection 
stage). Hence, notes in deep valleys of the salience contour are discarded.  
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Figure 5.9. Pitch salience contour (jazz3 excerpt). 
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However, low-salience notes that did not correspond to local minima are not re-
moved. Therefore, the procedure for detection and elimination of clear minima is exe-
cuted iteratively until no deletions occur. Finally, previously truncated notes are restored 
to their original time intervals, as in Section 5.4.4. 

A jazz excerpt (jazz3 sample in Table 2.1), where the solo is often absent, was chosen 
to illustrate the conducted operations. The note-salience contour of the employed sam-
ple is depicted in Figure 5.9, where ‘*’ denote false positives and ‘o’ represent deleted 
notes. It can be seen that two true notes were nevertheless removed. Besides, with a 
lower elimination threshold, a few more false positives would have been deleted, but best 
overall results were attained with the defined threshold. 

5.5.2. Analysis of the Duration Contour 

As for the duration contour, we proceeded likewise. However, we observed that duration 
variations are much more common than salience variations. This was expected since 
tone lengths tend to vary considerably. 

In this way, we decided to eliminate only isolated abrupt duration transitions, i.e., 
individual notes whose adjacent notes are significantly longer. Here, we define a note as 
being too short if its duration is less than 20% the one of the smallest of its neighbors (a 
value set in the minPercDur parameter). Additionally, in order not to inadvertently delete 
short ornamental notes, corresponding to frequently used whole-step grace notes, a 
minimum difference of three semi-tones was defined (maxSemiToneDiff parameter). 

5.5.3. Putting It All Together 
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Figure 5.10. Results of the algorithm for elimination of spurious notes. 
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The melody notes extracted after analysis of the pitch salience and duration con-
tours are visualized in Figure 5.10. There, thick black lines denote true positives, thin 
black lines represent false positives, thick gray lines denote deleted melodic notes and 
thin gray lines represent deleted non-melodic notes. It can be seen that, even though a 
few extra notes are disposed of (including two true melodic notes), some false positives 
remain. In this way, we carried out a pilot study aiming to further discriminate between 
melodic and accompaniment notes, described in the next section. 

The algorithm for elimination of spurious notes is summarized in Algorithm 5.4. 
Parameter definition is presented in Table 5.4.  

Algorithm 5.4. Elimination of spurious notes. 

1. Delete notes in lower salience intervals: 

1.1. Obtain the pitch salience contour: 

1.1.1. Calculate the average pitch salience of each 

note, i, avgSal(i). 

1.1.2. Form the salience contour as the sequence of av-

erage note saliences. 

1.2. Remove notes in lower salience regions of the salience 

contour: 

1.2.1. Detect all clear minima, as in salience-based 

track segmentation (see description on page 137 

of Section 4.4.1.B). 

1.2.2. Repeat 1.2.1 until no more notes are deleted. 

2. Delete notes corresponding to abrupt duration decreases: 

2.1. Define the duration contour (similarly to step 1.1). 

2.2. Delete isolated notes corresponding to deep valleys in 

the duration contour: 

2.2.1. Detect all local minima in the contour. 

2.2.2. For each local minimum, i: 

a) If duration(i) < minPercDur⋅duration(i+1) 

(i.e., 0.2⋅duration(i+1)) and  

duration(i) < minPercDur⋅duration(i-1) and 

|MIDI(i) – MIDI(i+1)| ≥ maxSemiToneDiff (i.e., 

3) and |MIDI(i) – MIDI(i-1)| ≥ maxSemi-

ToneDiff, delete note i.  
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2.3. Restore truncated notes to their original time inter-

vals, as much as possible. 

3. Return the resulting melody notes. 

 

Parameter Name Parameter Value 

minDeepValleyProm 30 

minPercDur 0.2 

maxSemiToneDiff 3 

Table 5.4. Parameters for elimination of spurious notes. 

5.6. Note Clustering 

As observed in the previous section, notes from the most prominent accompaniment are 
usually output when the solo stops. It can be argued that this corresponds to the way 
humans memorize songs: a continuous “line” that comprises both melody per se and 
major accompaniments. However, since our goal is to extract the melody in a strict sense 
(not a predominant pitch line), the accompaniment should be eliminated. To this end, 
we attempt to discriminate true notes from false positives via note clustering.  

This work is related to the classification of musical instruments in polyphonic con-
texts. Only little work has been conducted in this field (e.g., [Kitahara et al., 2005; 
Vincent and Rodet, 2004; Eggink and Brown, 2003]), with limited results so far. In fact, 
this is a complex task since, in one hand, it is difficult to define acoustic invariants that 
are good timbre correlates and, on the other hand, the proposed features are hard to 
measure in a polyphonic environment due to spectral overlapping between sources. 

We start by extracting a set of acoustic features related to timbre, using them as a ba-
sis for note source discrimination. The dimensionality of the feature space is reduced 
with recourse to Principal Component Analysis (PCA) and the best set of features is it-
eratively chosen via forward selection. Finally, clustering is implemented with Gaussian 
Mixture Models, where true notes and false positives are separated (similarly to [Marolt, 
2004]).  

For comparison purposes, we also performed note clustering on the entire set that 
results after ghost note elimination. This is carried out before the selection of salient 
notes, melody smoothing and deletion of spurious notes. 
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5.6.1. Acoustical Correlates of Timbre 

The concept of timbre is quite vague. In effect, it has been defined (if we can say so…) as 
“the quality of a sound by which a listener can tell that two sounds of the same loudness 
and pitch are dissimilar” [ANSI, 1973]. Here, timbre is described by exclusion: rather 
than explaining what timbre is, it is said what timbre is not. Moreover, this definition 
appears incomplete, since it does not seem to leave room for unpitched sounds. 

Timbre is a complex and broad perceptual attribute of sound. Basically, it answers 
the question to “what something sounds like” [Bregman, 1990, pp. 93] and is intimately 
related to the identification of sound sources: different instrument types sound differ-
ently, i.e., have different timbres. The biggest difficulty concerning its automatic process-
ing and analysis is that timbre is not explained by a single acoustic property.  

Often, timbre is qualitatively described using terms such as “bright”, “dull”, 
“scratchy” or “shimmering” [Wold et al., 1996]. However, the quantitative side of the 
subject is much more intricate. Indeed, the extraction of physical features that are good 
timbre correlates is a difficult issue, for which no definitive answers are available thus far.  

It is well believed that, at least for isolated tones, the perception of timbre is influ-
enced by the frequency content of the signal at steady-state, namely spectral centroid and 
the relative amplitudes of harmonic components, as well as the signal’s temporal enve-
lope and the temporal behavior of the harmonics, in which the attack transient assumes 
particular importance. For example, the spectral centroid is related to the perceived 
brightness of a sound whereas the temporal evolution of the harmonics (e.g., the differ-
ences in the respective onset times) is associated with the roughness of the sound. How-
ever, these features change dramatically from note to note across the playing range of an 
instrument. Yet, the same timbre is heard [Handel, 1989, pp. 170].  

Other features such as inharmonicity (introduced in Section 3.1.1) also give instru-
ments a characteristic richness. In reality, electronic instruments with exact harmonic 
frequencies sound cold and artificial. 

Intensity also has an effect on timbre. For example, sounds become more piercing at 
higher intensities [Handel, 1989, pp. 168]. In fact, in such cases, the excitation contains 
a greater amount of higher harmonics, and so the relative amplitudes of harmonic com-
ponents are modified. Furthermore, in musical instruments each harmonic has its own 
temporal envelope, which is also affected by intensity, as well as frequency. 

Resonant frequencies might look more appealing for timbre analysis. Nevertheless, 
neither the relative nor the absolute frequencies and intensities of the formants of musi-
cal instruments or the human voice are invariant timbre cues. Indeed, with respect to the 
human voice, the formant frequencies depend on aspects such as genre or age. As for 
musical instruments, these are influenced, for example, by the quality of the material 
used by the manufacturer [Handel, 1989, pp. 120, 172]. 

 



Chapter 5.   Identification of Melodic Notes 179 

Moreover, timbre perception is also affect by the ongoing context, e.g., tone fre-
quency, intensity and duration, as well as previous knowledge regarding the sounds of 
musical instruments and performing styles. The human auditory system makes extensive 
use of this kind of data during the listening experience.  

To conclude, “timbre is the result of many changing and interacting acoustic proper-
ties” [Handel, 1989, pp. 173]. Thus, we will attempt to model timbre with recourse to 
different sorts of acoustic features in the extracted musical notes.  

5.6.2. Feature Extraction 

Feature extraction consists on the computation of numerical quantities able to represent, 
in a condensed and meaningful way, relevant information that might be hidden in a raw 
data set.  

Most of the sound processing features suggested in the literature have been defined 
in the context of speech signal analysis, e.g., in tasks such as compression, telephony, 
speech recognition and synthesis [Tzanetakis, 2002, pp. 26]. Here, two representations 
have deserved particular attention: Linear Prediction Coefficients and Mel-Frequency 
Cepstral Coefficients. 

By the end of the 1990’s, when research on sound processing was becoming more 
diversified, features for representing non-speech signals started being investigated. Par-
ticularly, musical instrument recognition and genre classification gave a strong impulse 
towards the definition of musical-content features [Kitahara et al., 2005; Vincent and 
Rodet, 2004; Eggink and Brown, 2003; Tzanetakis, 2002; Eronen, 2001; Agostini et al., 
2001; Martin, 1999; Fujinaga, 1998].  

In our work, we are particularly interested in determining the source of each note to 
the extent that melodic and non-melodic notes might be discriminated. Our goal is 
partly connected to musical instrument identification. This is often carried out on a 
note-by-note basis, which corresponds to our case. However, most studies on instrument 
recognition are conducted in monophonic contexts, where clean and isolated tones are 
available. This is certainly not our situation, since mixtures of simultaneous notes are the 
common condition. Only little work has been devoted to instrument recognition in 
polyphonic audio (e.g., [Eggink and Brown, 2003]), so far with limited accuracy. 

In any case, we make use of several features that have been proposed in the literature 
with that purpose. Such features aim to capture pitch, intensity and timbre content using 
both the attack and steady-state regions of each note.  

Particularly, spectral shape (e.g., spectral centroid or skewness), attack transient (e.g., 
frequency slope) and duration, intensity and pitch-related features are often employed. 
In order to extract such features, especially, the ones associated with spectral shape, the 
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frequencies and magnitudes of tone harmonics must be acquired. This is described in 
the following paragraphs. 

A. Front-End for Feature Calculation 

The collection of features utilized in this work (listed on page 181) was extracted on 
top of the auditory front-end used in the pitch detection stage. Thus, the harmonic fre-
quencies and magnitudes of each pitch candidate in each frame were obtained directly 
from a correlogram frame, by using the respective correlogram columns, as illustrated in 
Figure 5.11 (see also Figure 3.14c, in Section 3.3.5). There, the correlogram column cor-
responding to a time lag of 5.4 msec (signaled with a black vertical line) is expanded in 
Figure 5.11b. Although we used a linear frequency axis for ease of harmonic visualiza-
tion, the center frequencies pertaining to each frequency channel are distributed along a 
logarithmic scale, as described in Section 3.3.1. 
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Figure 5.11. Detection of harmonics from the correlogram. 

Matching of Peaks in the F0 Column 

Then, for the column corresponding to the estimated pitch period, local peaks are 
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detected and matched to the expected theoretical frequencies of each harmonic (includ-
ing the first one).  

If no peak is found in the allowed range of the target frequency partial, which we 
have defined as a maximum distance of harmonicCentsRange = 40 cents from its theoreti-
cal value, the filterbank channel whose center frequency is closest to it is selected. Hence, 
in this case the harmonic frequencies and magnitudes are the ones of the filter channel. 
This is implemented much in the same way as Martin did [Martin, 1999, pp. 69-84]. 

In terms of the maximum number of harmonics, different values were experimented 
and best results were achieved with exactly six. Therefore, only numHarmonics = 6 fre-
quency partials are used. 

Determination of the Steady-State Region 

Two types of features are then computed, according to the appropriate note region 
where they should be acquired (i.e., attack or steady-state). Thus, we first determine the 
stability regions of each note.  

Based on the median frequency of the current note (as obtained in Section 4.3), we 
define the start of the steady-state region as the first frame of the pitch track where the 
frequency is less than maxCentsDistMedian = 50 cents apart from the median. As for its 
ending, it will correspond to the last point where the frequency is less than maxCents-
DistMedian apart.  

This strategy is not optimal since a few frames where the frequency is still evolving 
are inadvertently utilized in steady-state feature computation. Nonetheless, it copes well 
with notes with strong vibrato, where the steady region is not always easily identified. 

The steady-state region is the preferred time interval for calculating spectral features 
(e.g., spectral centroid). In effect, as a consequence of the transient noise present during 
note attacks, these features only make use of the frames in the steady part of the signal. 
In this way, their values are evaluated with recourse to the harmonic frequencies and 
magnitudes in all frames of the steady-state region. Regarding note attacks, these are the 
home of temporal features (e.g., frequency slope, onset duration).  

B. Used Features 

In order to obtain information on the source of each note, we employ a set of fea-
tures that might be able to capture pitch, intensity and timbre content, using both the 
attack and steady-state parts of each note. The following were computed, complying with 
the described criteria. We start the description with steady-state features. 

Harmonic Frequency 

The exact frequency values of each harmonic provide information on the harmonic-
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ity of the note under analysis. Also, this feature is the basis for other harmonicity-related 
features. Harmonic frequencies are directly derived from the described front-end, except 
that only the steady part of the note is used, due to increased harmonic stability. 

Relative Harmonic Frequency Ratio 

The same as before, except that now relative values are used. Formally, it turns out 
(5.3). There, hfr[i, k] denotes the harmonic frequency ratio regarding the kth harmonic (in 
a total of NH) in the ith frame of the steady-state region. In the same expression, fH repre-
sents harmonic frequency.  
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Basically, hfr is the ratio of the difference between the frequencies of the current 
harmonic, k, and the previous one, over the first harmonic. In case of perfect harmonic-
ity, i.e., if all harmonic frequencies conform to their theoretical values, hfr is always one. 

Spectral Inharmonicity 

Another harmonicity-related feature, as the name suggests. This feature is calculated 
as the cumulative sum of differences of each harmonic frequency from its theoretical 
value [Agostini et al., 2001], as in (5.4). There, the distances are measured in cents. 
Again, the steady-state part of the note is used. 
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Harmonic Magnitude 

The magnitudes of note harmonics give important information regarding timbre. 
Also, this is the basis of other spectral-shape features. Harmonic magnitudes are directly 
picked up from the front-end, resorting only to the steady-state region of the note. 

Relative Harmonic Magnitude Ratio 

The same as before, except that now relative values are used (based on [Martin, 
1999, pp. 90]). Formally, it comes (5.5): 
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In short, hmr is defined as the ratio of the magnitude of the current harmonic, 
MH[k], over the magnitude of the previous one.  

Spectral Centroid 

 This is a simple yet important feature in the characterization of instrument timbre. 
Indeed, besides being a measure of spectral shape, it also correlates well with the per-
ceived sound brightness, e.g., higher values correspond to “brighter” sounds, i.e., sounds 
with higher high-frequency content. Formally, the spectral centroid is defined as the first 
moment of the magnitude spectrum with respect to the frequency, i.e., the center of 
gravity of the magnitude spectrum, as follows (5.6) (e.g., [Tzanetakis, 2002, pp. 32]): 
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Relative Spectral Centroid 

This feature aims to provide a fundamental-frequency-free indication of the bright-
ness of a given harmonic sound. In this way, the relative spectral centroid, fRSC, is simply 
computed as the ratio of the spectral centroid over the sound’s F0, according to (5.7) 
[Martin, 1999, pp. 87]. Once more, this feature is calculated in the steady-state region.  
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Spectral Skewness 

Spectral skewness [Agostini et al., 2001] is another measure of spectral shape, evalu-
ated as the sum of harmonic magnitudes, weighted by their respective inharmonicities, 
according to (5.8). There, diff is defined as in (5.4). 
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Spectral Irregularity 

Still another spectral-shape feature, irregularity measures the amount of local spec-
tral change. It corresponds to the standard deviation of time-averaged harmonic ampli-
tudes from a spectral envelope [Eronen, 2001, pp. 38], as in(5.9):  
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Attack Duration 

Besides spectral-shape features, attack transient features are also calculated, given 
their importance in the perception of timbre.  

Namely, note attack duration correlates well with the type of coupling between the 
excitation and resonant structures (e.g., short attacks indicate tight coupling) [Eronen, 
2001, pp. 34]. This is computed as the time interval between onset time and the start of 
the steady-state region. 

Attack Energy Slope 

The attack energy slope [Martin, 1999, pp. 86] is hard to evaluate for notes with 
many missing values in the attack. Thus, its calculation was simplified by interpolating 
the first and last salience values at the beginning of the note (i.e., until the start of 
steady-state). 

Harmonic Onset Time Delay 

Onset asynchrony is also an important cue for timbre perception. Hence, harmonic 
onset times are measured as the absolute time delay of each harmonic compared to the 
note onset, in this manner (5.10) (based on Martin, 1999, pp. 100): 

[ ] ( ) ( )= − =1 , 1,2,onsetTimeDelay k onsetTime k onsetTime k NH  (5.10) 

Salience 

This feature is strongly correlated to the intensity of the sound. It is computed in the 
whole note duration, as in the previous sections.  

Pitch stability 

Here, we measure the frequency variation over successive time frames [Marolt, 
2004]. This feature provides information pertaining to aspects such as pitch jitter or 
modulation. It is calculated in the steady-state region of the note, as in (5.11): 
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Note Duration 

The name is self-explaining: this feature represents the total note duration. 

C. Computation of Statistical Summaries and Normalization 

Finally, rather than storing sequences of feature values, we obtain statistical summa-
ries for each feature. Namely, mean and standard deviation are used, except for those 
features that have a sole value in each note (e.g., frequency slope, duration).  

In addition, each feature vector is normalized to the [0; 1] interval to avoid numeri-
cal problems in the subsequent analysis, due to disparate feature ranges. 

D. Remarks on Feature Calculation 

The computation of some of the features was problematic, as a consequence of the 
polyphonic context we are working in. Namely, the frequency slope was difficult to calcu-
late for notes with many missing frequency values in the attack. Therefore, the slope was 
simply measured by interpolating the first and last frequency values at the beginning of 
the note (i.e., until the start of steady-state). Also, some harmonic magnitudes may be 
corrupted because of spectral collisions. In this way, those elements should be discarded 
and clustering should be accomplished following a missing feature strategy [Eggink and 
Brown, 2003]. This question will be addressed in future developments. 

5.6.3. Feature Selection and Dimensionality Reduction 

The quantity of implemented features is very high compared to the number of notes 
available in each song excerpt. Moreover, a high number of features may give rise to the 
so-called curse of dimensionality issue [Bishop, 1995]. Hence, feature selection and dimen-
sionality reduction were carried out prior to clustering. 

A. Feature Selection 

As previously referred to, it is important to select the best combination of features to 
enclose. Since it is impractical to analyze every different combination, forward selection 
was conducted [Bishop, 1995]. Thus, starting from an empty feature set, the algorithm 
adds, step by step, the feature that leads to the best model accuracy. The combination of 
features that originates the highest overall performance is then selected. 

B. Dimensionality Reduction 

Furthermore, the dimension of the feature space is reduced with recourse to Princi-
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pal Component Analysis [Bishop, 1995]. This is a widely used technique, whose basic 
idea is to project the computed feature matrix into a basis that best expresses the original 
data set, guaranteeing that the variance of the data is best preserved.  

The model is founded on four fundamental assumptions: i) linearity; ii) the ex-
tracted features follow Gaussian distributions; iii) large variances have important dynam-
ics (i.e., the components of the new basis with higher associated variances represent im-
portant dynamics, being therefore designated as principal components); and iv) the prin-
cipal components are orthogonal. Hence, we assumed our problem to be linear (al-
though extensions to PCA for the non-linear case are available), and that the imple-
mented features conform to a Gaussian distribution. 

Given the previous assumptions, the object of PCA can be concisely resumed to 
finding a projection matrix P whose lines correspond to new basis vectors such that the 
projected data, Y, is de-correlated. Formally, it comes (5.12):  
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In (5.12), X denotes the original multi-dimensional data, i.e., our initial feature ma-
trix, m is the number of features, n stands for the number of measurements (i.e., the 
number of notes) and RY is the covariance matrix of the transformed data.  

The previous problem is solved by defining the projection matrix P such that its 
rows are the eigenvectors of XXT. In this way, each line of P corresponds to a basis vector 
and the ith element of RY stands for the variance of X along the ith principal component. 

Finally, we performed dimensionality reduction by keeping the “best” components, 
i.e., the ones for which the variance is the highest (the best directions of projection) and 
whose sum amounts for percVariance = 90% of the total variance. 

Regarding implementation, we made use of the PCA Matlab code provided in the 
Netlab toolbox [Nabney and Bishop, 1996]. 

5.6.4. Clustering 

Finally, after feature extraction, selection and dimensionality reduction, true melody 
notes and false positives are discriminated via clustering.  

Clustering is a very broad research theme, which could constitute a thesis in itself. In 
this section, we will only offer a brief overview of the subject, as it applies to our problem 
of identification of melodic notes. A detailed discussion of clustering techniques, such as 
neural networks, k-means clustering, GMMs, etc., can be found in [Bishop, 1995]. In 
short, such techniques consist on the automatic grouping of example feature vectors into 
a set of classes, in an unsupervised fashion. 
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A. Cluster Definition with GMMs 

In our approach, we employ GMMs, which are extensively used for unsupervised 
data clustering [Bishop, 1995]. Its essential idea is to fit Gaussian distributions to the 
observed data. Thus, GMMs model the probability density of the observed features by 
multivariate Gaussian mixture densities, as in (5.13):  
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There, numClusters is the number of defined clusters. In order to separate false posi-
tives from true melody notes, we defined only two clusters (a melody cluster and a garbage 
cluster). In the same expression, p is the PDF of the mixture, y represents a feature vector 
with dimension m, θ is the full set of parameters and wi is the weight associated with the 
ith multivariate Gaussian, pi, with parameters θi, defined as follows (5.14): 
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In (5.14), µi and Ri represent, respectively, the mean and the covariance matrix of 
the ith Gaussian. The complete set of parameters is formally defined as (5.15): 

{ }, , , 1,2, ,i i iR w i numClustersθ µ= =  (5.15) 

B. Parameter Optimization 

Our goal is, then, to find the maximum likelihood estimation of θ. This is obtained 
by maximizing the log-likelihood, as in (5.16).  
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There, Y is the feature matrix composed by n feature vectors yk. This is accomplished 
iteratively with recourse to the expectation-maximization algorithm [Bishop, 1995], using 
once again the source code from the Netlab toolbox. 

Before optimization, the parameters must receive adequate initial values. In terms of 
the centers, these are initialized with the k-means clustering algorithm. As for covariance 
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matrices, these are typically assumed diagonal, for efficiency reasons. This presumes fea-
ture independence, which is the case since, after PCA, the projected features are 
de-correlated. Moreover, the diagonals start with unity values. Finally, the mixture 
weights are uniformly initialized. 

Optimization is then iteratively conducted until a maximum of maxIter = 1000 itera-
tions is reached or the difference in the log likelihood between two consecutive itera-
tions is below minLogDiff = 0.0001. 

C. Note Assignment and Identification of the Melodic Cluster 

After optimization, the probabilities of each sample (i.e., note) calculated in each 
Gaussian, pi, i.e., the class posterior probabilities, are evaluated. Subsequently, each note 
is allotted to the cluster where its probability is maximum. 

Finally, the melody is assigned to the cluster with maximum salience, where cluster 
salience is computed as the sum of the average pitch salience of each note multiplied by 
its duration, as follows (5.17): 
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There, clustSal[i] denotes the salience of the ith cluster, avgSalience[k, i] and duration[k, 
i] are, respectively, the average pitch salience and duration of the kth note in that cluster. 
The average salience of note k is only calculated in the set of non-empty frames Ak,i. In 
the same expression, salience[k, j] is the salience of the kth note in its jth frame. 

D. Clustering on the Whole Note Set 

As an experiment, we also investigated a different strategy, where clustering was car-
ried out on the whole note set (the one obtained after ghost note elimination).  

Some constraints should be imposed on the performed clustering (e.g., no overlap-
ping between notes) [Marolt, 2004]. Nonetheless, we ignored this issue since the proce-
dures for detection of salient notes and melody smoothing ensure the consistency of the 
results. Furthermore, harmonically-related note candidates may actually correspond to 
components of the same note, and so such restrictions would be problematic in this case. 
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Therefore, notes were clustered with the GMM algorithm, using now five clusters56. 
Then, for each cluster, salient notes were detected, melody smoothing was accomplished 
and spurious notes were removed. 

Finally, the melody was assigned to the cluster with the highest salience, as before. 

5.6.5. Putting it All Together 

The results for note clustering are illustrated in Figure 5.12, for the same jazz excerpt 
used before (see Figure 5.10, on page 175). As can be seen, all false positives were elimi-
nated. However, two more melody notes (besides the other two already deleted when 
possible spurious notes were inspected) were inadvertently discarded.  

0 5 10 15
40

50

60

70

80

90

Time (s)

M
ID

I N
ot

e 
N

um
be

r

 

Figure 5.12. Results of the note clustering algorithm (jazz3 excerpt). 

 

The note clustering process is summarized in Algorithm 5.5. Parameter definition is 
presented in Table 5.5 (on page 191).  

Algorithm 5.5. Note clustering.  

1. Get harmonic frequencies and magnitudes based on the audi-

tory-model front-end: 

1.1. For each periodicity candidate: 

1.1.1. Select the corresponding correlogram column. 

                                                        
56 We set this parameter by assuming a maximum of five simultaneous harmonic instruments, which 

seems reasonable to us. 
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1.1.2. Detect all peaks in the column. 

1.1.3. Match peaks to the expected values of each har-

monic or select the frequency and magnitude of the 

closest channel, in a maximum of numHarmonics. 

2. Determine the steady-state region. 

3. Perform feature calculation: 

3.1. Measure steady-state features. 

3.2. Evaluate attack transient features. 

3.3. Compute feature means and standard deviations for the 

frame-based features. 

3.4. Normalize features to the [0, 1] interval. 

3.5. Create the feature matrix: 

3.5.1. Assemble each feature vector (column containing 

the calculated features – means and standard de-

viations, where appropriate). 

3.5.2. Form the feature matrix with the feature vector 

from each note (columns in the matrix). 

4. For the overall best set of features (previously obtained via 

forward selection), perform dimensionality reduction via PCA: 

4.1. In the transformed feature matrix, keep the ones that 

retain percVariance% of the total variance. 

5. Implement note clustering: 

5.1. Define two clusters (“melodic” and “garbage” clusters), 

using GMMs. 

5.2. Implement cluster optimization with the expecta-

tion-maximization algorithm. 

5.4. Assign each note to the corresponding cluster. 

6. Identify the melodic cluster, based on salience comparison. 

(7. Alternatively, perform clustering on the whole note set.) 

5.7. Putting It All Together 

The melody identification stage is compacted in Algorithm 5.6. 
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Parameter Name Parameter Value 

harmonicCentsRange 40 

numHarmonics 6 

maxCentsDistMedian 50 

percVariance 0.9 

numClusters 2 

covariance matrices diagonal 

maxIter 1000 

minLogDiff 0.0001 

Table 5.5. Note clustering parameters. 

Algorithm 5.6. Identification of melodic notes. 

1. Eliminate ghost harmonically-related notes, according to 

Algorithm 5.1 (making use of harmonicity and common fate). 

2. Select the most salient notes, as in Algorithm 5.2: 

2.1. Delete low-frequency and non-dominant notes. 

2.2. Resolve note overlapping (by removing or truncating 

notes). 

3. Perform melody smoothing, as described in Algorithm 5.3: 

3.1. Implement octave correction. 

3.2. Handle abrupt note transitions based on the definition 

and analysis of regions of smoothness. 

3.3. Fill in gaps with melody candidates in the allowed 

range. 

3.4. Restore the timings of previously truncated notes. 

4. Eliminate spurious accompaniment notes, as in Algorithm 5.4: 

4.1. Work out abrupt salience transitions. 

4.2. Resolve abrupt duration transitions. 
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5. Execute note clustering, according to Algorithm 5.557: 

5.1. Extract a set of acoustical features. 

5.2. Perform feature selection (recurring to forward selec-

tion) and dimensionality reduction (using PCA). 

5.3. Cluster the entire set of notes into a melodic and a 

garbage cluster (or five clusters, in case the complete 

note set is used), by training a GMM with the selected 

features. 

6. Return the identified melodic notes. 

5.8. Experimental Results, Analysis and Conclusions 

The results of the melody identification stage are presented and discussed in the follow-
ing paragraphs. Results of both the MIREX’ 2004 and 2005 evaluations are presented. 
The main limitations of the algorithm are discussed, along with hypotheses for further 
developments. 

A. Analysis of Results 

Results for the elimination of ghost harmonically-related notes are summarized in 
Table 5.6. The first four columns (after the ID column) provide information as to the 
percentage of discarded notes, where the last three concern raw note identification accu-
racy. 

As can be seen in the last line of the third column, 37.8% of the notes present after 
trajectory segmentation (TS) were deleted during the elimination of ghost notes (EGN). 
This value is nearly the same in both databases, though the excerpts in the M04 set have 
a much higher amount of notes because of being longer. In a few excerpts, very high 
elimination rates were achieved, e.g., Mambo Kings (ID 8) and midi2 (17), with values 
close to 65%. Other high deletion rates were attained in Claudio Roditi (7) and daisy2 
and 3 (IDs 12 and 13). These corresponded to situations where many of the original 
notes were ghosts. However, very low values appear in samples such as Eliades Ochoa (9) 
and male opera (19). This seems to be a consequence of excessive curve distance during 
common modulation analysis, due to several missing values in both the melodic and 
ghost notes. 

                                                        
57  This step is not included in practical implementations, since it was not sufficiently robust, as will be 

seen in the next section. Although those developments are still preliminary, we hope to further work 
out the encountered difficulties and be able to apply it in a more general framework. 
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Number of Notes MRNA 
ID 

TS  EGN % Elim. % Kept 
Melodic TS EGN % Elim. 

melodic 

1 83 47 43.4 34.0 98.0 98.0 0.0 

2 85 51 40.0 29.4 82.2 82.2 0.0 

3 93 61 34.4 18.0 95.4 95.4 0.0 

4 107 75 29.9 21.3 96.6 96.6 0.1 

5 100 74 26.0 13.5 85.3 85.3 0.0 

6 80 55 31.3 25.5 93.6 93.6 0.0 

7 95 40 57.9 47.5 98.8 98.8 0.0 

8 71 25 64.8 48.0 93.6 93.6 0.0 

9 58 50 13.8 20.0 86.5 86.5 0.0 

10 103 78 24.3 14.1 81.1 81.1 0.0 

11 107 50 53.3 52.0 95.4 95.4 0.0 

12 230 124 46.1 18.5 96.5 96.5 0.0 

13 125 67 46.4 16.4 98.1 98.1 0.0 

14 241 175 27.4 12.6 81.1 79.5 2.0 

15 224 137 38.8 16.1 90.8 90.8 0.0 

16 278 150 46.0 26.0 91.7 91.7 0.0 

17 142 46 67.6 47.8 98.4 98.4 0.0 

18 303 221 27.1 16.7 79.6 78.4 1.5 

19 341 288 15.5 21.2 70.2 69.2 0.5 

20 392 268 31.6 12.7 72.7 71.5 1.6 

21 306 220 28.1 13.2 87.0 87.0 0.0 

Avg 
PDB 

89.3 55.1 38.1% 29.4% 91.5% 91.5% 0.0% 

Avg 
M04 

258.2 168.0 37.5% 20.1% 86.6% 86.1% 0.6% 

Avg 169.7 109.6 37.8% 25.0% 89.2% 88.9% 0.3% 

Table 5.6. Results for the elimination of ghost harmonically-related notes.  

We took special care so as not to discard true melodic notes. As can be seen in the 
last column of Table 5.6, an average of only 0.3% of melodic frames where erroneously 
disposed of in the two databases. Owing to our conservative deletion approach, from all 
the notes that were kept after ghost elimination, only 25% are melodic. Hence, a high 
number of non-melodic notes are still present, as illustrated in the fourth column. How-
ever, results show that the balance between under and over-elimination was satisfactory. 

Although around 38% of the notes are removed, many non-melodic notes remain. 
Therefore, the notes that convey the main melodic line must be identified among these. 
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Summary results pertaining to this task are presented in Table 5.7. There, both the me-
lodic raw note accuracy (MRNA) and now the overall raw note accuracy (ORNA) metrics 
are evaluated (see Section 2.6.2). The first three columns correspond to the selection of 
the most salient notes whereas the last four are related to the melody smoothing process. 

 

Salient Notes Melody Smoothing 
ID 

MRNA MCNA  ORNA MRNA MCNA ORNA % Kept 
melodic 

1 54.1 86.4 53.2 90.5 96.9 89.0 92.3 

2 70.6 75.9 56.9 80.5 80.5 65.5 97.9 

3 94.2 94.2 91.1 93.6 93.6 90.6 98.1 

4 86.9 86.9 67.5 95.6 95.6 74.2 99.0 

5 67.4 73.2 51.2 78.1 78.1 57.2 91.5 

6 70.4 83.0 61.4 90.8 90.8 80.6 97.1 

7 93.5 98.2 87.2 98.2 98.2 91.7 99.5 

8 90.3 90.3 83.4 93.6 93.6 86.4 100.0 

9 81.3 89.8 64.6 81.3 89.8 64.6 94.1 

10 75.1 75.1 53.8 75.1 75.1 53.8 92.6 

11 31.6 90.3 31.7 94.2 94.2 92.8 98.7 

12 91.3 92.9 79.2 92.0 92.0 81.8 95.3 

13 84.7 84.8 84.6 97.5 97.5 97.5 99.4 

14 71.6 74.1 66.9 73.6 73.6 70.4 92.6 

15 83.1 87.6 61.2 87.3 87.6 64.1 96.2 

16 69.6 83.5 67.6 87.4 89.1 85.5 95.4 

17 93.3 96.7 91.9 96.7 96.7 95.2 98.2 

18 66.5 68.4 59.8 66.6 66.6 64.2 84.9 

19 42.5 47.4 40.7 47.4 47.4 44.2 68.1 

20 69.7 70.4 61.9 69.6 69.6 65.6 97.4 

21 78.9 80.2 69.3 82.3 82.3 74.1 94.6 

Avg 
PDB 74.1% 85.8% 63.8% 88.3% 89.7% 76.9% 96.4% 

Avg 
M04 75.1% 78.6% 68.3% 80.0% 80.2% 74.2% 92.2% 

Avg 74.6% 82.3% 66.0% 84.4% 85.2% 75.6% 94.4% 

Table 5.7. Results of melody detection: selection of salient notes and melody smoothing. 

We can see that good results were achieved in melody smoothing. There, an average 
accuracy of 84.4 / 75.6% (MRNA / ORNA, respectively) was attained. Also, in several 
excerpts the system reached almost 100%. Without melody smoothing, the average accu-
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racy was 74.6 / 66.0%58 and so our implementation of the melodic smoothness principle 
amounts for an average improvement of 9.8 / 9.6%. This is more evident in our test-bed, 
where the accuracy raised by 14.2 / 13.1% in the two measures. 

The relevance of disposing of ghost notes before the identification of melodic notes 
is confirmed by the clear decrease in performance if melody identification is carried out 
exactly after note determination (74.2 / 67.3% against 84.4 / 75.6% when ghost note 
elimination is conducted). In effect, harmonically-related notes abound and some of 
them are more salient than the real melodic notes. Hence, those are selected, misleading 
the smoothing algorithm. 

Several octave errors were also corrected in the melody smoothing stage, especially in 
the excerpts from Battlefield Band (ID 11), Pachelbel’s Kanon (1) and midi1 (16). In 
fact, in the conducted experiments the proposed scheme was practically immune to oc-
tave errors. In reality, disregarding such errors accuracy after melody smoothing in-
creased to 85.2% (MCNA metric), i.e., an improvement of only 0.8%. 

Finally, in the last column, we observe that on an average 94.4% of melodic notes 
were kept among the ones available after ghost note elimination (see the 6th column of 
Table 5.6). Only the operatic samples (IDs 18 and 19) stayed much below the average, 
for the reason that too many non-melodic notes were initially selected, thus misdirecting 
the melody-smoothing procedure. Indeed, in these cases, long smooth regions with sev-
eral non-melodic notes are defined, which the smoothing algorithm leaves untouched.  

The results obtained for pop/rock and bachata excerpts pleasantly surprised us, 
since they have strong percussion (Juan Luis Guerra, ID 10), as well as intense guitars 
(Ricky Martin, 5) with distortion (Avril Lavigne, 6). In effect, heavy percussion is a major 
cause of pitch detection inaccuracy due to peak interference and masking. In these cases, 
the allowed trajectory sleeping was most helpful. 

Also, the results from the choral sample (2) were very interesting because four 
simultaneous voices are present, plus orchestral accompaniment. Even so, the algorithm 
could reasonably well detect the melody, which we defined as corresponding to the 
soprano. The use of this example contradicts our previous assumptions on the employed 
excerpts, but we were interested in evaluating a specific situation like this one. 

When one single pitch is extracted in each frame, an average accuracy of 62.4 / 
63.4% is attained, which improves to 64.1 / 65.0% when octave errors are disregarded. 
As can be seen, these figures are far behind the ones obtained when multiple pitches are 
selected. However, concerning the ORNA metric, it shows some improvement over the 
MRNA measure. Indeed, the net effect of extracting only one pitch per frame is that the 
number of false negatives increases but, on the other hand, the number of false positives 

                                                        
58  For fair comparison, we also implemented gap-filling here. The performance without this procedure 

drops slightly to 71.1 / 64.6%. 
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decreases. As will be seen, this could be a favorable strategy when the identification of 
melodic notes is particularly complex, e.g., in samples with low SNR. 

Removal of false positives was then addressed. Results are presented in Table 5.8. 

 

Elim. Spurious Note Clustering Note Clustering 
(Whole Set) ID 

MRNA ORNA MRNA ORNA MRNA ORNA 

1 90.5 89.0 90.5 89.0 90.5 89.0 

2 80.5 65.5 82.1 76.9 82.1 72.4 

3 93.6 90.6 93.6 90.6 93.6 90.6 

4 95.6 74.2 95.6 74.2 95.6 74.2 

5 78.1 57.2 76.8 58.6 78.1 57.2 

6 90.8 80.6 90.8 87.4 90.8 80.6 

7 98.2 91.7 98.2 91.7 98.2 91.7 

8 93.6 86.4 93.6 86.4 93.5 86.4 

9 81.3 64.6 81.3 71.5 81.3 64.6 

10 75.1 53.8 75.1 53.8 75.1 53.8 

11 94.2 92.8 94.2 91.2 94.2 92.8 

12 95.4 86.8 85.3 78.2 95.4 86.8 

13 97.5 97.5 97.5 97.5 97.5 97.5 

14 74.1 72.7 73.5 71.3 74.1 72.7 

15 83.6 74.7 79.7 85.1 83.6 74.7 

16 86.4 85.8 86.4 85.8 89.2 89.4 

17 96.7 95.2 96.7 95.2 96.7 95.2 

18 66.6 64.2 66.6 64.2 66.6 64.2 

19 47.4 45.0 47.4 45.0 47.4 45.0 

20 70.1 70.8 69.6 68.8 70.1 70.8 

21 83.0 78.1 83.0 78.1 83.0 78.1 

Avg 
PDB 88.3 76.9 88.3 79.2 88.5 77.6 

Avg 
M04 80.1 77.1 78.6 76.9 80.4 77.4 

Avg 84.4 77.0 83.7 78.1 84.6 77.5 

Table 5.8. Results of the melody detection system: elimination of accompaniment notes. 

After the deletion of spurious accompaniment notes, we can see that the ORNA 
measure improved slightly from 75.6 to 77.0%, i.e., 1.4% increase. This was more appar-
ent in the M04 database, where an improvement of 2.9% was accomplished. A few ex-
cerpts were particularly successful, e.g., jazz3 (ID 15), which showed a growth of 10.6% 
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in the ORNA metric. However, this was achieved at the expense of deleting also a few 
true melodic notes, which originated a slight decrease in the MRNA measure. This has 
also happened in other samples, e.g., midi1 (16).  

On the other hand, because of note elimination, the original durations of some 
notes were restored (recall that some of them were truncated when the most salient notes 
were selected), which led to a slight improvement of MRNA in a few excerpts, e.g., jazz2 
(14) or pop1 (20). In the end, the overall MRNA average stayed at 84.4%. 

We can see that the overall note accuracy is always lower than the accuracy derived 
using only the melodic frames. In reality, our method shows a limitation in disposing of 
false positives (i.e., accompaniment or noisy notes): 31.0% average recall and 52.8% av-
erage precision. This is a direct consequence of the fact that the algorithm is biased to-
wards detecting the maximum number of melodic notes, no matter if false positives are 
included. Moreover, a few extracted notes are slightly longer than the annotated ones. 
One notorious example is Avril Lavigne’s sample (6), where all false positives were elimi-
nated but still the overall accuracy continued below the melodic accuracy59. This situa-
tion may derive from annotation errors. 

As for note clustering, the ORNA measure improved a bit more (1.1%, comparing 
to the numbers in the elimination of spurious notes, and 2.5%, regarding melody 
smoothing). This was more evident in our test-bed, where the ORNA metric increased by 
2.3% in comparison to the same value after melody smoothing. Namely, Hallelujah (2) 
showed a striking improvement. In the M04 database, the jazz3 sample (15) also im-
proved substantially. Even so, the average results in the M04 database decayed slightly in 
both the MRNA and ORNA measures, due to the incorrect removal of true melodic 
notes. Namely, the accuracy of daisy2 (12) dropped by more than 10%. Other samples 
were also slightly disturbed by note clustering, e.g., jazz2 (14) and pop1 (20). It is curious 
that our test-bed was more successful than the M04 database, although longer song ex-
cerpts were expected to favor note clustering. 

In spite of some improvements, a few excerpts still show several false positives, e.g., 
Dido (4) and Ricky Martin (5). Indeed, different songs prefer different feature combina-
tions. For example, almost all untrue notes from Juan Luis Guerra’s sample were elimi-
nated with a particular feature set. However, the presented best average results were ac-
complished using the following features (in order of insertion from the forward selection 
algorithm): harmonic magnitude, relative harmonic magnitude ratio, relative spectral 
centroid, spectral inharmonicity, spectral centroid, pitch salience, spectral irregularity, 
harmonic frequency, relative harmonic frequency ratio, spectral skewness, frequency 
slope in the attack and onset duration.  

                                                        
59  In fact, even when no false positives are present, the ORNA measure can only equal MRNA values 

in case no extracted notes span time intervals annotated as silent. 
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Clustering the whole note set (last two columns) led to similar results: 84.6% / 
77.5% accuracy. An interesting outcome of this approach was that, although the ORNA 
measure stayed practically the same, no true note was incorrectly deleted. In fact, the 
average MRNA measure increased a bit, contrariwise to the decline observed in the pre-
vious clustering mechanism. Therefore, this strategy apparently promotes more stable 
results. Again, different excerpts prefer different features combinations, but best global 
results were attained with only these: harmonic magnitude, relative harmonic magnitude 
ratio, harmonic frequency, relative harmonic frequency ratio and spectral centroid. 

As expected, the note-clustering procedure did not prove robust (although clustering 
in the entire set seemed more secure). In reality, despite its positive impact on several 
samples, in others the accuracy showed a marked decline. Moreover, the overall best fea-
ture set varies from sample to sample and so its identification becomes challenging in a 
generic context. Thus, for the sake of reliability, the results output by our system are the 
ones achieved after the elimination of spurious accompaniment notes. 

With the purpose of comparing the present results with the ones from 
MIREX’2004, we also evaluated our method with the exact frequency values used there 
(i.e., pitch contour metrics, MRPA and ORPA). In this way, the accuracy after eliminat-
ing spurious accompaniment notes, taking into consideration only the M04 database, 
dropped from 80.1 / 77.1% (note metrics - see the first two columns of Table 5.8) to 
75.1 / 71.1% (pitch contour metrics), i.e., 5 / 6%.  

The defined parameter set was tuned using the excerpts in Table 2.1. Some of the 
specified thresholds were based on common musical practice (e.g., minimum note dura-
tion, maximum pitch interval), as previously defined. However, other values were em-
pirically set, although our initial guesses were usually close to the final values (e.g., the 
parameters for the elimination of non-dominant notes). As in Section 4.6, and in order 
to evaluate the influence of parameter variance in the final results, parameter values were 
individually modified, typically in a [-50%, +50%] range from the defined thresholds (up 
to 100% in some parameters, e.g., numTop parameter, in Table 5.2). In the conducted 
experiments, we observed a maximum average decrease of 7% in the MRNA metric. 
Nevertheless, a few individual excerpts had higher variations. For instance, in Ricky Mar-
tin’s sample (ID 10) we noticed accuracy oscillations of up to +6% and –21%. 

The final melody extraction accuracy is obviously affected by the behavior of the first 
two stages of the system (depicted in Figure 2.1). Particularly, inaccurate pitch detection 
automatically constrains the maximum achievable performance. However, this has more 
to do with the nature of the used song excerpts than to algorithmic decisions in pitch 
detection (for example, strong percussion may cause considerable pitch masking). Re-
garding the conversion of pitch sequences to musical notes, different parameterizations 
have an effect on the accuracy of the subsequent stages of the method, particularly the 
minimum note duration parameter. As discussed in Section 4.6, the maximum decrease 
in the average melody note accuracy was 6.5%, which resulted from a minimum note 

 



Chapter 5.   Identification of Melodic Notes 199 

duration of 60 msec. 

In order to assess the generality of our approach and the particular parameter tun-
ing, we evaluated it with the test set used in the MIREX’2004 evaluation, which con-
sisted of 10 extra samples. The results achieved for the pitch contour metrics (i.e., MRPA 
and ORPA) were, respectively, 72.1% and 70.1%. For the note metrics (MRNA and 
ORNA), the average accuracy was 77.4% and 75.1%, respectively. Hence, the obtained 
results are only slightly below the ones attained in the M04 training set.  

An additional test set was used in the MIREX’2005 evaluation. There, 25 excerpts of 
10 to 40 seconds were employed, covering genres such as Rock, R&B, Pop and Jazz 
[MIREX, 2005; Poliner and Ellis, 2005b]. There, pitch contour accuracy was determined 
by calculating the percentage of correctly identified frames (where a maximum separation 
of a quarter-tone from the annotated frequencies was permitted). Also, a granularity of 
10 msec was defined (and so we mapped the original 5.8 msec hop size to the required 
value). In this test-bed the melodic and overall pitch contour accuracy of our method 
dropped clearly, respectively, to 62.7% and 57.8%. Although we did not have access to 
the selected excerpts60, three representative examples were provided by the organizers. 
These, along with discussions during ISMIR’2005, allow us to deduce that this decrease 
in efficiency is mostly due to the use of excerpts with lower SNR. In this case, too many 
non-melodic notes might have been initially selected (a consequence of basing our strat-
egy on the salience principle), which the smoothing algorithm was unable to fix. 

The global results for the MIREX’2004 evaluation [Gómez et al., 2006; MIREX, 
2004] are summarized in Table 5.9.  

 

Overall Raw Pitch Accuracy Overall Chroma Pitch Accuracy 

Participant Training 
Set 

Test  
Set 

Training 
and Test 
Average 

Training 
Set 

Test  
Set 

Training 
and Test 
Average 

Paiva 67.2 71.0 69.1 68.0 71.4 69.7 

Poliner 66.2 46.1 56.1 66.3 48.0 57.1 

Bello 54.3 47.4 50.8 59.3 56.1 57.7 

Tappert 42.4 42.0 42.2 55.5 56.3 55.9 

Baseline 29.5 36.0 32.7 40.2 44.2 42.2 

Table 5.9. Results of the MIREX’2004 evaluation. 

                                                        
60  The excerpts comprised in the MIREX’2005 database were not made public since the organizers plan 

to reuse them in future evaluations. This is due to the difficulties in acquiring reliable annotations. 
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In the previous table, the first column presents the results in the training set (i.e., 
the ten samples in Table 2.1), the second column corresponds to the test set (ten addi-
tional similar excerpts) and the average of the two, which was used for ranking, is pre-
sented in the third column. Similar measurements are supplied in the last three col-
umns, except that, there, octave errors are disregarded. Our average results using the two 
sets are, presently, slightly above (70.6% in the ORPA metric)61. 

The participating algorithms were briefly described in Section 2.4.2. Furthermore, a 
monophonic pitch tracker proposed in [Cano, 1998], was used to establish a baseline 
performance for the evaluation. It can be seen that our method surpassed all the others 
by a healthy amount. Regarding the test set, the difference in accuracy is even more 
prominent. As to the baseline performance, all systems clearly outperformed it. 

In terms of the melodic similarity metric employed in MIREX’2004, our approach 
scored better than Bello’s (the other system that explicitly extracted musical notes) with 
an average distance of 8.63 over 14.12. As referred to, it is not trivial to correlate those 
distances to perceptual impressions of similarity. In other words, it is difficult to con-
clude, using only this metric, whether listeners would recognize the original songs. 
Hence, this metric is more relevant as a means for comparison of different approaches. 

With respect to the MIREX’2005 evaluation [MIREX, 2005], global results are 
summarized in Table 5.10.  

We participated with two algorithms: one corresponding to the present develop-
ments, where multiple pitches were extracted in each frame (Paiva MP), and another one 
where only one pitch was determined (Paiva SP). Unlike all our previous results, the sin-
gle-pitch approach scored better than the multi-pitch one in the ORPA measure. In real-
ity, our system showed some limitations in this dataset, since most of the used excerpts 
were pop/rock songs with low SNR. Thus, the scheme adopted for selection of the most 
salient notes delivered many erroneous notes, which the melody smoothing method was 
unable to resolve. Given the described difficulties, the single-pitch approach led to more 
false negatives but fewer false positives, which turned out to be a better strategy. 

As can be seen in Table 5.10, Dressler’s approach was clearly the best in this evalua-
tion. Indeed, it seems that this method handles reasonably well both the identification of 
melodic frames (second column) and melody/accompaniment discrimination, besides 
being the fastest one. On the other hand, ours was the slowest one, mostly because of the 
employed auditory model, the native Matlab execution and the fact that no optimiza-
tions were carried out. 

                                                        
61  In comparison to our system's version by the time of MIREX’2004, some additional implementa-

tions were conducted. Namely, the look-ahead and gap-filling procedures were added to the pitch 
trajectory construction module, frequency-based segmentation was slightly improved (e.g., singer 
tuning), onset detection was carried out, elimination of spurious notes and note clustering were de-
veloped, as well as small improvements to the selection of the most salient notes.  
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Participant ORPA MRPA MCPA Runtime 
(sec) 

Dressler 71.4 68.1 71.4 32 

Ryynänen 64.3 68.6 74.1 10970 

Poliner 61.1 67.3 73.4 5471 

Paiva (SP) 61.1 58.5 62.0 45618 

Marolt 59.5 60.1 67.1 12461 

Paiva (MP) 57.8 62.7 66.7 44312 

Goto 49.9 65.8 71.8 211 

Vincent1 47.9 59.8 67.6 ? 

Vincent2 46.4 59.6 71.1 251 

Brossier 3.2 3.9 8.1 41 

Table 5.10. Results of the MIREX’2005 evaluation. 

It can also be observed that the actual Goto’s system behaved much better than 
Tappert and Batke’s implementation used in MIREX’2004. Although we only evaluated 
the probabilistic front-end for pitch detection, we can infer that our pitch detection re-
sults (presented in Section 3.6) are also below the ones obtained in the actual system. As 
previously referred to, both Tappert and Batke’s version and ours seem to have missed 
some sort of implementation peculiarities. 

In the same table, the results for the last four participants are not directly compara-
ble since, in these, melodic discrimination is not conducted, i.e., an F0 value is output in 
each frame. Furthermore, scores for Brossier are artificially low due to an unresolved 
algorithmic issue. 

B. Limitations of the Algorithm and Possible Improvements 

Our approach seems relatively style-independent, since the pitch accuracy did not 
differ significantly among the different excerpts (excerpt for opera). However, the algo-
rithm had more difficulties in songs with low signal-to-noise ratio, as confirmed by its 
lower performance in the MIREX’2005 evaluation. Also, excerpts with strong vibrato, 
like the opera samples, put additional obstacles on the pitch detection and note deter-
mination stage, which was reflected on the performance of melody identification.  

The main drawback of the melody identification stage is in the discrimination be-
tween the melody and the accompaniment. Indeed, our attempts towards note clustering 
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lacked robustness, as the best set of features varies from sample. Moreover, some particu-
lar feature combinations simply cannot discriminate between true notes and false posi-
tives, causing a notorious drop in melody detection accuracy. Therefore, for the time 
being, robustness cannot be assured after the elimination of spurious notes. In any case, 
longer song excerpts could possibly improve the behavior of note clustering. 

Feature extraction in a polyphonic context is also a challenging issue. In effect, some 
harmonic magnitudes may be unreliable due to spectral collisions. Hence, corrupted 
components should be discarded and clustering should be attempted following a missing 
feature strategy (e.g., [Eggink and Brown, 2003]).  

Also, note clustering via timbral features places some difficulties on melody extrac-
tion in songs where the solo moves from instrument to instrument, e.g., jazz pieces in 
which different instruments alternate the lead. In such cases, when the soloist changes, 
the notes from the dominant instrument will be erroneously discarded. In fact, timbre is 
not the only meaningful feature for melody grouping; as previously referred to, the high-
ness of each individual part, as well as proximity and intensity, play an important role. 
Anyway, in the available test-beds the lead instrument is fixed, which theoretically allows 
for melody extraction recurring to note clustering. Also, we should point out that the 
previous algorithms (selection of salient notes and melody smoothing) are transparent to 
eventual soloist changes, having, however, the problem of delivering false positive notes.  

Regarding execution time, our approach clearly shows a weak point here. This is a 
consequence of the use of an expensive pitch detection scheme. In reality, about 97% of 
the total execution time is spent in the first stage of the algorithm, with particular inci-
dence on the derivation of the cochleagram and correlogram in each frame. Hence, our 
method was considerably slower than the fastest one at both MIREX’2004 and 
MIREX’2005. The presented figures, though not directly comparable because of differ-
ences in operating systems and languages (e.g., Windows vs Linux, Matlab vs C), show 
substantial discrepancies. Anyway, computational time is not yet a major issue, since this 
field of research is still struggling for accurate, general and robust results. However, the 
tremendous time inefficiency of the auditory front-end raises the question of its future 
feasibility for large music collections. 

C. Other Possible Improvements 

As referred to, the melody smoothing procedure is unable to fix situations were too 
many erroneous notes are selected. This should be worked out in future developments, 
e.g., by finding the best melodic path through the set of available notes, much in the 
same way as Ryynänen and Klapuri do [Ryynänen and Klapuri, 2005b]. In addition, 
higher-level information could be further exploited in our system, namely with recourse 
to key and tonality estimation, probabilities of note transitions, or application of 
voice-leading rules. 

 



 

Chapter 6  
 
CONCLUSIONS AND PERSPECTIVES 

“Now this is not the end. It is not even the beginning of the end. But it is, 

perhaps, the end of the beginning." 

Winston Churchill, “Speech after the British defeat of the German Afrika Korps in Egypt”,  
November 10, 1942 

Having reached the end of this dissertation, our first thought is that this is, at 
best, the end of an initial stage towards melody detection in polyphonic audio. 
In fact, any task dealing with content analysis of polyphonic musical signals, 

and melody extraction in particular, is inherently problematical. Tasks such as pitch de-
tection in complex mixtures with strong percussive sounds, accurate conversion of pitch 
sequences into musical notes or segregation of melodic notes entail intricate research 
issues, for which we have offered a humble contribution. The attained results, though 
motivating, show that there is room for improvement. 

In this chapter, we summarize the work carried out throughout this document and 
the main conclusions that can be drawn from it. A not so specific analysis is conducted, 
since several aspects were already discussed during the evaluation sections in each of the 
previous chapters. Therefore, only a few key technical matters are addressed here. 

Based on the main encountered difficulties and on the current trends on MIR re-
search, our general perspectives for future work are presented, in terms of possible im-
provements to the current approach and its extension towards music retrieval. 

6.1. Summary and Conclusions 

In this dissertation, we presented a system for melody detection in polyphonic musical 
signals. Besides other possible applications, this is a main concern for MIR tools such as 
QBH in “real-world” music databases. Existing work in this field is presently almost en-
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tirely confined to the MIDI domain, and so we believe to have given an interesting con-
tribution to the area, with encouraging results. 

Our system starts with a melody-oriented pitch detection methodology, where an 
auditory-model-based pitch detector is adopted and extended for multiple-pitch extrac-
tion. One of our basis assumptions is that melodic notes are usually salient in poly-
phonic mixtures. Hence, selecting a few of the most intense F0s in each frame leads to 
satisfactory results. However, in songs with low SNR, peak masking occurs more promi-
nently, which is mostly due to percussive sounds. Experiments were performed towards 
frame-wise percussion elimination but the accomplished results were not convincing. In 
fact, this is a complex subject that needs further attention in the future. Anyway, this 
shortcoming was partly attenuated during pitch track construction, where track inactivity 
is allowed, making it possible to restore undetected F0s. 

Unlike most other melody extraction schemes, our method explicitly identifies mu-
sical notes with precise pitches and timings, something that is not attended to in most 
related research. The achieved results, despite showing that there are opportunities for 
improvement, are positive. The main drawbacks of the algorithm result from its reliance 
on the definition of a minimum note duration and from the limitations of onset detec-
tors in polyphonic contexts. The former gave rise to difficulties on the segmentation of 
pitch tracks with extreme vibrato, such as in opera pieces. The latter placed obstacles on 
the accurate segmentation of consecutive notes at the same pitch. 

As a result of our multi-pitch detection strategy, several notes are created, among 
which the main melodic line must be identified. This is not a trivial task since many as-
pects of auditory organization influence the perception of melody by humans, for in-
stance in terms of the pitch, timbre and intensity content in a given musical mixture. In 
this way, we resorted mostly to aspects of intensity, where the most salient notes at each 
time are first selected, and frequency proximity, where the initial melodic contour is 
smoothed out. The obtained results were quite satisfactory in the used test-bed. Never-
theless, in sound signals where many salient non-melodic notes are present, e.g., musical 
pieces with low SNR, the smoothing procedure experienced difficulties in replacing the 
incorrect notes with the melodic ones. In reality, long smooth regions are validated, re-
gardless of containing a high number of erroneous notes or not. This seems to have been 
the case in the MIREX’2005 evaluation. 

Additionally, we tackled the problem of false positives. As expected, this proved to 
be difficult and so only slight improvements were achieved. Spurious accompaniment 
notes that appear for brief moments during pauses between melodic notes were reasona-
bly well dealt with. However, note clustering, aiming to delete accompaniment notes that 
are output when the solo stops, lacked robustness. Indeed, the best feature set varied 
from excerpt to excerpt. Also, a more effective clustering process would possibly require a 
higher number of notes in each song sample, which is not the case.  
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To sum up, we most likely need many years of intensive research before sufficiently 
robust, accurate and efficient melody detection algorithms become available for com-
mercial purposes, much in the same way that speech recognition systems only attained a 
minimum acceptable performance after several years. 

6.2. Perspectives for Future Research 

With respect to future work, we plan to further work out some of the described limita-
tions, namely in what concerns the generality of the melody identification module. As 
referred to, the algorithm shows some difficulties when the assumption that the melodic 
notes are usually salient in the mixture fails. To this end, higher-level cognitive informa-
tion, e.g., memories and expectations or prior-knowledge relating to the properties of 
musical events, could be exploited, mimicking in this manner the human music-listening 
experience to some extent.  

In this way, we could take advantage of pattern detection and matching in music. In 
fact, the music-listening mechanism is actively accompanied by memorization and recog-
nition of patterns, which create expectations on what is to come. Therefore, the recog-
nized musical patterns have predictive power, which could be valuable for melody identi-
fication, namely for post-processing tasks such as error detection and correction. In our 
algorithm, the selection of the notes carrying the melody could be supported by the de-
tected patterns. For example, if a sequence of notes is very close to a previously detected 
succession, the next note could be selected as the one that best continues the pattern in 
cause (in an exact or fuzzy way, dealing with different notes that might appear in the suc-
cession). This in turn requires similarity metrics such as the edit distance (Section 2.6.2). 
Likewise, statistics regarding the most common sequences of notes in a given piece could 
be used.  

Context information could also be added as an improvement to the system. For ex-
ample, the tonality of the piece under analysis, added to musicological information re-
garding the preferred notes for particular keys, as well as the use of note transition prob-
abilities, could be beneficial for resolving ambiguities in note selection. Moreover, statis-
tics pertaining to the most common sequences of notes for pieces played in particular 
keys could be utilized. 

Additionally, meter and rhythm information could be exploited to support melody 
identification. Indeed, notes starting in synchronism with strong beats are more likely to 
be correct.  

The meaningful integration of such diverse knowledge sources is usually not trivial. 
Hence, probabilistic methods or blackboard systems could be employed as decision-aid 
modules. 
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The suggested developments are likely to improve melody/accompaniment dis-
crimination. Moreover, this could also be accomplished by conducting note clustering 
with longer song excerpts, as previously referred to. 

The last point stresses the urgent need of larger, longer and more varied test-beds. In 
reality, the available standard compilations (from MIREX’2004 and 2005) are very short 
in number of song excerpts and also lack variety, in spite of the efforts to make them 
sufficiently significant. This is a result of the difficulties in acquiring reliably annotated 
songs. In this way, multi-track recordings seem like a good alternative. We are presently 
establishing contacts towards this end. 

Also, as previously mentioned, we have devised a general-purpose mechanism for 
melody detection. However, every musical style has its own peculiarities. Thus, in the 
current state of events, research could also evolve by focusing on approaches targeting 
specific musical set-ups. In effect, “methods can be different according to the complexity 
of music (monophonic or polyphonic), the genre (classical with melodic ornamentations, 
jazz with singing voice, etc.) or the representation of music (audio, midi, etc.)” [Gómez et 
al., 2006]. This is reflected in the fact that the performances of different methods depend 
on distinct musical characteristics, e.g., some perform better in singing excerpts whereas 
others prefer instrumental solos, some do a good job in music with extreme dynamics 
while others fail there, others are more robust in excerpts with low SNR and still others 
are more successful in songs of specific genres. Similarly, music outside the com-
mon-practice Western canon should be attended to. 

An obvious follow-up to our work would be the construction of a prototype for 
query-by-melody in an audio database. Indeed, it would be interesting to evaluate the 
robustness of QBM systems to automatically created and imperfect melody databases, 
such as the ones obtained by existing melody extraction algorithms. It is often argued 
that realistic retrieval by similarity is only possible in the query-by-example domain, and 
so an application gap would be filled if sufficient accuracy were attained.  

The subject of imperfectly extracted melodies is key for robust QBM. Actually, cur-
rent systems operate almost exclusively on clearly defined melodies, available in a sepa-
rate MIDI channel. For audio QBM, robustness to inaccurate melodies, with inexact 
timings, missing and extra notes or semi-tone errors, is of primary concern. These topics 
have been addressed to some extent recently (e.g., [Pikrakis and Theodoridis, 2005; Song 
et al., 2002]), but the results confirm the need of more accurate and general systems. 

Besides the technical issues relating to query transcription and matching, other 
higher-level questions have to be unequivocally answered, namely regarding the rigorous 
definition of what a query and a answer are and what constitutes similarity 
[Uitdenbogerd et al., 2000]. Answers to these questions depend on users’ needs, e.g., 
whether the query should be hummed, sung, whistled or played in an instrument; 
monophonic or polyphonic; whether robustness to off-key queries or queries with miss-
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ing or extra notes should be a requirement; or whether the list of responses is intended 
for plagiarism detection or spotting of half-remembered songs.  

Additionally, the automatic summarization of songs is fundamental for both query 
matching and presentation of results. Research under this topic is already evolving, with 
promising results (e.g., [Peeters et al., 2002]). 
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APPENDIX A 
 
OTHER EVALUATED PITCH DETECTION 

APPROACHES  

Besides the AMPD, we also evaluated other different kinds of approaches, based on 
spectral, autocorrelation, spectral autocorrelation and probabilistic analyses. All of them 
conform to the general framework presented in Section 3.3:  

i) selection of a fixed analysis frame; 

ii) definition of some sort of pitch salience curve in each frame (e.g., summary cor-
relogram, autocorrelation function, energy associated with different F0 candi-
dates, spectral ACF or probabilistic likelihood of each possible F0); 

iii) peak detection in the pitch salience curve; 

iv) selection of the most salient pitch candidates (in a maximum of maxNPC, i.e., 5 
in our implementation). 

 

Both temporal and spectral autocorrelation were previously described. Thus, only an 
algorithm devised by us, relying on STFT-based harmonic analysis, and a probabilistic 
approach, proposed in [Goto, 2000], are described here.  

A.1. STFT-based Harmonic Analysis 

The algorithm described in the following paragraphs was our first attempt towards mel-
ody-oriented pitch detection, based on the fact that the Short-Time Fourier Transform is 
one of the most widely used time-frequency analysis technique. 

Briefly, the Discrete Fourier Transform (DFT) provides information about how 
much of each frequency is present in a signal. This works well for static signals, for which 
the spectral content of the sound does not change significantly over time. However, in 
musical signals, notoriously time-varying in nature, the Fourier transform is unable to 
distinguish the different frequencies present. Instead, it shows information regarding all 
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the existing frequencies, regardless of their occurrence in time.  

The STFT is then suggested as an attempt to deal with the lack of time resolution in 
the DFT. To this end, the input signal is divided into small sequential frames of analysis 
for which (quasi-)stationarity can be assumed (46.44 msec in our case). Then, the stan-
dard DFT is applied to each of these frames in succession. The result is a time-dependent 
representation, showing the changes in the frequency spectrum as the signal progresses. 
A comprehensive overview of the DFT and the STFT can be found in [Smith, 1997; 
Polikar, 1999]. 

A. Windowing 

The standard DFT assumes a signal of theoretically infinite length. In order to cope 
with finite-length signals, these are expanded to infinite length by repeating them an in-
finite number of times. As a consequence, in STFT analysis a discontinuity or break in 
the signal occurs at frame boundaries. As a result, spurious spectral components appear. 
Indeed, a simple division of the signal into frames is the same as multiplying it by a slid-
ing rectangular window, characterized by its great amount of spectral leakage. 

This problem is usually tackled by applying a windowing function to the frame, 
which smoothly scales the amplitude of the signal to zero at each border, reducing the 
discontinuities at frame boundaries. Thus, windowing has the advantage of reducing the 
presence of spurious spectral components. As before, we use a Hamming window, which 
has proved to offer a good trade-off between spectral leakage and spectral resolution, 
besides being simple to implement and computationally efficient [Smith, 1997, pp. 286]. 

When a window is applied to a signal, some information near the frame boundaries 
is obviously lost. For this reason, the STFT is further improved by imposing some 
overlapping between consecutive frames. In this way, information that is lost in a frame 
one is picked up in another. A hop size of 5.8 msec was defined, as previously. 

B. Zero-padding 

In order to reduce the spectral frequency intervals, each frame is zero-padded. 
Zero-padding does not improve resolution but improves single peak location accuracy, 
which is important for acquiring more accurate peak frequencies. Furthermore, the DFT 
is performed more efficiently with the FFT algorithm, which is optimized for speed when 
the number of samples is a power of 2. Therefore, we added the number of zeros that is 
necessary to attain 4096 samples, originating a frequency interval of 5.38 Hz, which 
seems adequate. In effect, the melody is usually in a mid-range frequency, above 100 Hz. 
Since the frequency difference between notes A2 (110 Hz) and A2# (116.54 Hz) is above 
our threshold, the defined interval looks appropriate. Peak location accuracy can be fur-
ther improved by peak interpolation [Martins, 2001, pp. 32; Serra, 1989, pp. 43]. 
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C. Evaluation of the Magnitude Spectrum 

After defining a windowed, zero-padded signal frame, its magnitude spectrum is 
achieved via the FFT. Additionally, we convert the spectrum to dB units, taking its loga-
rithm. The reason for doing this is that we found experimentally that spectral peaks 
show up more clearly in the logarithmic magnitude spectrum. Formally, it comes (A.1): 

( )1020 log wzX FFT= x  (A.1) 

where xwz denotes the windowed zero-padded frame signal and X represents the magni-
tude spectrum in dB. 

D. Detection of F0 Candidates 

Next, we look for peaks in the magnitude spectrum, according to the assumption 
that the fundamental frequencies present in the signal correspond to clear peaks in the 
spectrum. We look for all local maxima rather than only prominent peaks, for the previ-
ously described reasons (Section 3.3.4).  

After detecting all spectral peaks, we identify a set of candidate harmonic groups, 
found by grouping together harmonically-related peaks (in a similar way to [Martins, 
2001]). These groups are characterized by their F0s and energies. We start by finding the 
highest spectral peak, which is our first F0 candidate. Then, for each candidate ff (de-
termined as explained in the following paragraph), we find all its harmonic candidates. A 
given frequency peak is considered an harmonic of a candidate peak if its frequency de-
viates at most 50 cents from the theoretical harmonic value, i.e., is in the range (A.2): 

50
1200; ( ) , 2

k ff
k ff r r

r

⋅ ⋅ ⋅ =  
 (A.2) 

In (A.2), r is the ratio for obtaining the frequency range k stands for the kth harmonic 
of the fundamental frequency ff.  

Not all the detected peaks are F0 candidates. In reality, we define a threshold for the 
minimum peak amplitude such that F0 peak candidates might not differ by more than 
35 dB from the maximum peak found. 

Once we have found all the harmonic groups, their respective energies are computed 
by summing up the amplitudes of the peaks belonging to each group. Since we took the 
logarithmic magnitude of the spectrum, we convert peak magnitudes back to their origi-
nal values by inverting the logarithm. After that, only the groups with sufficient energy 
are kept. To accomplish this, we calculate the maximum group energy and determine the 
minimum allowed group energy using the minimum energy ratio parameter, minSalRatio, 
as in Chapter 3. We then eliminate all groups whose energies are below this threshold. 
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Finally, the energies of the harmonic groups in all frames are normalized to the [0; 100] 
interval. 

Clearly, one of the main drawbacks of this approach is that no F0 will be detected in 
the case of a masked or missing first harmonic. This is particularly problematic given the 
fact that, in typical popular music, the harmonic structure of the leading soloist (e.g., 
singing voice) is often overlapped by the higher harmonics of the bass or masked by per-
cussive sounds. Therefore, another approach, e.g., making use of comb filtering, could 
be followed with the same purpose. 

The results of this method are illustrated in Figure A.1 for our saxophone riff, where 
the candidate F0s are circled (bottom panel). The harmonic group with the highest en-
ergy corresponds to the peak at 371.4 Hz, being very close to the real pitch value (at 
about 370 Hz). In addition, super-harmonics are also output as F0 candidates. 
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Figure A.1. Results of the STFT-based harmonic analysis. 

A.2. Probabilistic Approach 

We are also interested in evaluating a probabilistic approach, where pitch likelihoods are 
calculated from the magnitude spectrum. To this end, we based ourselves on the algo-
rithm described in [Goto, 2000], with some adaptations. Basically, the method regards 
the observed frequency components as a weighted mixture of harmonic-structure tone 
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models and estimates their weights by using the expectation-maximization algorithm. 
These weights represent F0 likelihoods.  

A. Spectrum Evaluation 

The author started by designing an STFT-based multirate filterbank that separates 
the signals in five bands, namely: 0 – 450, 450 – 900, 900 – 1800, 1800 – 3600 and 
3600 - 7200 Hz. The instantaneous frequency, i.e., the rate of change of the phase of the 
signal - based on the phase vocoder [Flanagan and Golden, 1966] - is then computed. 
Afterwards, candidate frequency components are extracted by means of a fre-
quency-to-instantaneous-frequency mapping and the magnitude spectrum in the corre-
sponding frequencies is obtained.  

However, in our implementation, no multirate filterbank was employed and no 
candidate frequencies were determined. Rather, we directly used the magnitude spec-
trum for all frequencies from zero to Nyquist, as in the previous section. Thus, all fre-
quency bins are used as F0 candidates. 

B. Frequency Region of Analysis 

One of the main assumptions in this model is that the main melodic line has the 
most important harmonic structure in middle and high frequency regions. Namely, a 
band-pass filter is designed so that it covers most of the dominant harmonics of typical 
melodies and de-emphasizes crowded frequency regions around the F0. No matter if the 
F0 is within that range or not, the method attempts its estimation with recourse to the 
frequency components in the defined range that support it. 

The characteristics of the BPF filter are best explained in a logarithmic frequency 
scale. Namely, the logarithmic scale used in equal temperament tuning is defined. 
Hence, frequency values in Hz units (linear scale) are converted to cents (logarithmic 
scale), as described in Section 2.6.2. 
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Figure A.2. Frequency response of the melodic band-pass filter. 
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The frequency response of the BPF spans a range from 4800 to slightly above 9600 
cents (i.e., 261.6 Hz to 4186 Hz). In our implementation, we defined a maximum of 
10000 cents, i.e., 5274 Hz. The transition band is linear (in the logarithmic scale), from 
4800 to 6000 cents (523.3 Hz). The overall frequency response is sketched in Figure A.2. 

C. Calculation of the F0’s Probability Density Function 

The observed probability density function of the band-pass filtered frequency com-
ponents, pX, in a given time frame is defined as in (A.3): 
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where BPF(f)62 denotes the frequency response of the band-pass filter and X(f) stands for 
the spectrum of the waveform in a given analysis frame, at frequency f. 

In order to obtain the PDF of the F0, the basic idea is to consider that the observed 
PDF, pX, was generated from a model that is a weighted mixture of harmonic-structure 
tone models. The PDF of a tone model, p(f|F), which indicates where the harmonics of 
the fundamental frequency F tend to occur, is defined by Gaussian distributions cen-
tered at the theoretical locations of the harmonics, according to (A.4): 
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(A.4) 

In the previous expression, α is a normalization factor used to guarantee that the 
PDF’s integral equals 1, N = 16 is the number of harmonics considered, W = 17 cents is 
the standard deviation of the Gaussian distribution G(f; m, σ) and c(h) specifies the am-
plitude of the hth harmonic, also defined as a Gaussian with unity mean and standard 
deviation H = 5.563. This is the model presented in [Goto, 2000], which was later ex-
tended in [Goto, 2001] in order to incorporate adaptive tone models. However, since the 
average results did not improve substantially (about 1.9%), we kept the original model 
for simplicity. 

                                                        
62  BPF, X, XBPF and pX are all discrete entities. However, we use (.) rather than [.] for the sake of uni-

formity with the authors continuous notation. 
63  We use the default parameters specified by the author, except when explicitly stated. 
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Next, we define a mixture density, p(f; θ), as a weighted combination of the har-
monic-structure tone models. Formally, it comes (A.5):  
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There, Fl and Fh denote the lower and upper bounds of the allowable F0 range (3600 
and 9600 cents, respectively, i.e., 130.8 and 4186 Hz). In our implementation, the inte-
gral is computed using a frequency interval of 20 cents. In (A.5), w(F) is the weight of the 
tone model with F0 = F. The distribution of weights must satisfy (A.6):  

( ) 1
h
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F

F

w F dF⋅ =∫  (A.6) 

The problem is then to estimate the parameter θ (.e., the weights of the tone mod-
els) so that the observed PDF, pX, is likely to have been generated from the model p(f; θ), 
where the weights, w(F), can be interpreted as the PDF of the F0. Naturally, the weight of 
a particular tone model will be strongly correlated to the energy of their observed har-
monics. 

To this end, the maximum likelihood estimation of θ, θML, is achieved by maximiz-
ing the mean log-likelihood defined as (A.7): 
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This is accomplished iteratively with recourse to the expectation-maximization algo-
rithm. Details regarding the proposed solution for this particular problem can be found 
in [Goto, 2000]. The author does not specify how the weights are initialized, neither the 
stopping criteria of the algorithm. Therefore, we assume uniform weight initialization 
and define as stopping conditions the stabilization of the conditional expectation of the 
mean likelihood, i.e., consecutive values differ by less than 0.01, or the fulfillment of a 
maximum of 20 iterations (values up to 10000 were experimented with similar results). 
Then, the weights for the following frame are start with the final weights in the previous 
one, as recommended by the author. 

The obtained F0 PDF serves then as our pitch salience function, from where the 
highest peaks are selected as pitch candidates. 

The results of this method are illustrated in Figure A.3 for a frame of the same saxo-
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phone riff we have been using. The candidate F0s are signaled by circles in the bottom 
panel. There, the highest peak at 370.0 Hz corresponds to the true pitch. 
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Figure A.3. Results of the probabilistic pitch detector. 

 

 



 

APPENDIX B 
 
DESCRIPTION OF SONG EXCERPTS  

Further details on the used musical excerpts are provided here. These, as well as annota-
tion and result files, can be downloaded from http://www.dei.uc.pt/~ruipedro/Melody 
Detection/. Some of the derived characterizations are qualitative and subjective. 

1) Pachelbel’s “Kanon” 

 
Genre Classical 

Solo Type Instrumental (MIDI synthesized) 

Polyphonic Complexity Low 

SNR High 

Peculiarities 
- Periodic abrupt note transitions 
- Strong bass 

Duration 6.0 sec 

# Melodic Notes 16 

 

2) Handel’s “Hallelujah” 

 
Genre Choral 

Solo Type Female vocal (choral soprano) 

Polyphonic Complexity High  

SNR Medium/Low 

Peculiarities 
- Counterpoint (four simultaneous singing voices) 
- Instrumental accompaniment in the foreground when the 

choir stops 

Duration 5.54 sec 

# Melodic Notes 15 
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3) Enya – “Only Time” 

 
Genre New Age 

Solo Type Female Vocal 

Polyphonic Complexity Low 

SNR High 

Peculiarities 
- Significant reverberant effects 
- Consecutive notes at the same pitch 

Duration 5.95 sec 

# Melodic Notes 11 

 

4) Dido – “Thank You” 

 
Genre Pop 

Solo Type Female Vocal 

Polyphonic Complexity Medium 

SNR Medium/High (low when drums are hit) 

Peculiarities 

- Periodic strong percussive beats 
- Some glissando 
- Instrumental accompaniment in the foreground during 

melody pauses 

Duration 6.0 sec 

# Melodic Notes 16 

 

5) Ricky Martin – “Private Emotion” 

 
Genre Pop 

Solo Type Male Vocal 

Polyphonic Complexity Medium 

SNR Medium (low when guitar strumming is very intense) 

Peculiarities 
- Intense guitar strumming and ambient background, 

which goes to the foreground during melody pauses 
- Some glissando 

Duration 6.0 sec 

# Melodic Notes 10 

 



Appendix B.   Description of Song Excerpts 231 

6) Avril Lavigne – “Complicated” 

 
Genre Pop/Rock 

Solo Type Female Vocal 

Polyphonic Complexity Medium 

SNR Medium (low when drums are hit) 
- Periodic strong percussive beats 

Peculiarities 
- Some glissando 
4.27 sec Duration 
14 # Melodic Notes 

 

7) Claudio Roditi – “Rua Dona Margarida” 

 

Low 
High 
- Periodic soft percussive beats 

 

Jazz/Easy Genre 
Instrumental (trumpet) Solo Type 

Polyphonic Complexity 
SNR 

- Harmony with a second background instrument in a 
lower pitch register Peculiarities 

- Consecutive notes at the same pitch 
6.0 sec Duration 
19 # Melodic Notes 

 

8) Mambo Kings – “Bella Maria de Mi Alma” 

Bolero Genre 
Instrumental (trumpet) Solo Type 
Low/Medium Polyphonic Complexity 
High SNR 
- Soft percussion 

Peculiarities 
- Some glissando 
6.0 sec Duration 
12 # Melodic Notes 
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9) Eliades Ochoa – “Chan Chan” 

 
Son Genre 

Solo Type Male vocal 

- Harmony with a second vocal in a lower pitch register and 
several latin percussive instruments 

# Melodic Notes 

Genre 

Polyphonic Complexity 

Peculiarities 

6.0 sec 

11) Battlefield Band – “Snow on the Hills” 

Instrumental (flute) 

High 

Duration 

High Polyphonic Complexity 
Medium SNR 
- Off-key singing and considerable glissando 

Peculiarities 

- Consecutive notes at the same pitch 
3.05 sec Duration 
10 

 

10) Juan Luis Guerra – “Palomita Blanca” 

 
Bachata 
Male vocal Solo Type 
High 
Medium SNR 
- Long time intervals where the solo is absent 
- Several latin percussive instruments 
- Glissando and consecutive notes at the same pitch 

Duration 
11 # Melodic Notes 

 

 
Scottish Folk Genre 

Solo Type 
Low Polyphonic Complexity 

SNR 
- Flute and fiddle playing unison 

Peculiarities 
- Harmony with another (lower) accompanying instrument 
5.84 sec 
26 # Melodic Notes 
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12) daisy2 

Female vocal (synthesized singing voice) 

High 

Duration 

 

Solo Type 

SNR 

- Instrumental accompaniment in the foreground during 
melody pauses 

# Melodic Notes 

 
Pop Genre 

Solo Type 
Low Polyphonic Complexity 

SNR 
- Unison (or one octave above) accompanying instrument 

Peculiarities 
- Soft ambient accompaniment 
22.0 sec 
23 # Melodic Notes 

13) daisy3 

 
Pop Genre 
Female vocal (synthesized singing voice) 
Low Polyphonic Complexity 
High (sometimes low, when guitar strumming is intense) 
- Guitar strumming, sometimes more intense than the solo 

Peculiarities 
- Simple singing syllables 
17.03 sec Duration 
11 # Melodic Notes 

 

14) jazz2 

 
Jazz Genre 
Instrumental (saxophone) Solo Type 
Medium/Low Polyphonic Complexity 
Medium SNR 
-  Soft solo, accompaniment and percussion 

Peculiarities 

- Consecutive notes at the same pitch 
15.45 sec Duration 
22 
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15) jazz3 

 
Genre 

Polyphonic Complexity 

Peculiarities 

16) midi1 

Polyphonic Complexity 

17) midi2 

Polyphonic Complexity 

- Consecutive notes at the same pitch 

 

Jazz 
Instrumental (saxophone) Solo Type 
Medium/High 
Medium/High SNR 
- Long time intervals where the solo is absent 
- Soft percussion 
14.83 sec Duration 
22 # Melodic Notes 

 

 
Pop Genre 
Instrumental (MIDI synthesized) Solo Type 
Low 
Medium/High SNR 
- Soft solo, instrumental accompaniment and shakers Peculiarities 
19.23 sec Duration 
39 # Melodic Notes 

 

 
Folk Genre 
Instrumental (MIDI synthesized) Solo Type 
Low 
Medium/High (sometimes low due the harmony with a 
second part) SNR 

- Harmony with second instrument 
Peculiarities 

16.62 sec Duration 
22 # Melodic Notes 
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18) opera female 2 

 
Genre Opera 

Solo Type Female vocal 

Peculiarities 

37 

Solo Type 

20.0 sec 

Genre 

Duration 

Polyphonic Complexity Low 

SNR High 

Duration 16.11 sec 

# Melodic Notes 

- Extreme vibrato 
- Instrumental accompaniment in the foreground during 

melody pauses 

 

19) opera male 3 

 
Genre Opera 

Male vocal  

Polyphonic Complexity Low 

SNR High 

Peculiarities 

Duration 
# Melodic Notes 61 

- Fast succession of short notes 
- “Triangular” melodic contour 
- Strong vibrato 
- Harmony with accompanying orchestral instruments 

 

20) pop1 

 
Pop 

Solo Type Male vocal 

Polyphonic Complexity Medium 

SNR Medium/High (low when second vocal is present) 

Peculiarities 

22.71 sec 

# Melodic Notes 34 

- Harmony with second vocal in a lower pitch register 
- Accompaniment is often more intense than the solo 
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21) pop4 

 
Genre Pop 

Solo Type Male vocal  

Polyphonic Complexity Medium 

SNR Medium/High 

Peculiarities 

Duration 21.66 sec 

# Melodic Notes 29 

- Fast beating 
- Some glissando 
- Harmony with a background instrument 
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